| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resspsr.s |  |-  S = ( I mPwSer R ) | 
						
							| 2 |  | resspsr.h |  |-  H = ( R |`s T ) | 
						
							| 3 |  | resspsr.u |  |-  U = ( I mPwSer H ) | 
						
							| 4 |  | resspsr.b |  |-  B = ( Base ` U ) | 
						
							| 5 |  | resspsr.p |  |-  P = ( S |`s B ) | 
						
							| 6 |  | resspsr.2 |  |-  ( ph -> T e. ( SubRing ` R ) ) | 
						
							| 7 |  | eqid |  |-  ( +g ` H ) = ( +g ` H ) | 
						
							| 8 |  | eqid |  |-  ( +g ` U ) = ( +g ` U ) | 
						
							| 9 |  | simprl |  |-  ( ( ph /\ ( X e. B /\ Y e. B ) ) -> X e. B ) | 
						
							| 10 |  | simprr |  |-  ( ( ph /\ ( X e. B /\ Y e. B ) ) -> Y e. B ) | 
						
							| 11 | 3 4 7 8 9 10 | psradd |  |-  ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( X ( +g ` U ) Y ) = ( X oF ( +g ` H ) Y ) ) | 
						
							| 12 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 13 |  | eqid |  |-  ( +g ` R ) = ( +g ` R ) | 
						
							| 14 |  | eqid |  |-  ( +g ` S ) = ( +g ` S ) | 
						
							| 15 |  | fvex |  |-  ( Base ` R ) e. _V | 
						
							| 16 | 2 | subrgbas |  |-  ( T e. ( SubRing ` R ) -> T = ( Base ` H ) ) | 
						
							| 17 | 6 16 | syl |  |-  ( ph -> T = ( Base ` H ) ) | 
						
							| 18 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 19 | 18 | subrgss |  |-  ( T e. ( SubRing ` R ) -> T C_ ( Base ` R ) ) | 
						
							| 20 | 6 19 | syl |  |-  ( ph -> T C_ ( Base ` R ) ) | 
						
							| 21 | 17 20 | eqsstrrd |  |-  ( ph -> ( Base ` H ) C_ ( Base ` R ) ) | 
						
							| 22 |  | mapss |  |-  ( ( ( Base ` R ) e. _V /\ ( Base ` H ) C_ ( Base ` R ) ) -> ( ( Base ` H ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) C_ ( ( Base ` R ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) ) | 
						
							| 23 | 15 21 22 | sylancr |  |-  ( ph -> ( ( Base ` H ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) C_ ( ( Base ` R ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) ) | 
						
							| 24 | 23 | adantr |  |-  ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( ( Base ` H ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) C_ ( ( Base ` R ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) ) | 
						
							| 25 |  | eqid |  |-  ( Base ` H ) = ( Base ` H ) | 
						
							| 26 |  | eqid |  |-  { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } | 
						
							| 27 |  | reldmpsr |  |-  Rel dom mPwSer | 
						
							| 28 | 27 3 4 | elbasov |  |-  ( X e. B -> ( I e. _V /\ H e. _V ) ) | 
						
							| 29 | 28 | ad2antrl |  |-  ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( I e. _V /\ H e. _V ) ) | 
						
							| 30 | 29 | simpld |  |-  ( ( ph /\ ( X e. B /\ Y e. B ) ) -> I e. _V ) | 
						
							| 31 | 3 25 26 4 30 | psrbas |  |-  ( ( ph /\ ( X e. B /\ Y e. B ) ) -> B = ( ( Base ` H ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) ) | 
						
							| 32 | 1 18 26 12 30 | psrbas |  |-  ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( Base ` S ) = ( ( Base ` R ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) ) | 
						
							| 33 | 24 31 32 | 3sstr4d |  |-  ( ( ph /\ ( X e. B /\ Y e. B ) ) -> B C_ ( Base ` S ) ) | 
						
							| 34 | 33 9 | sseldd |  |-  ( ( ph /\ ( X e. B /\ Y e. B ) ) -> X e. ( Base ` S ) ) | 
						
							| 35 | 33 10 | sseldd |  |-  ( ( ph /\ ( X e. B /\ Y e. B ) ) -> Y e. ( Base ` S ) ) | 
						
							| 36 | 1 12 13 14 34 35 | psradd |  |-  ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( X ( +g ` S ) Y ) = ( X oF ( +g ` R ) Y ) ) | 
						
							| 37 | 2 13 | ressplusg |  |-  ( T e. ( SubRing ` R ) -> ( +g ` R ) = ( +g ` H ) ) | 
						
							| 38 | 6 37 | syl |  |-  ( ph -> ( +g ` R ) = ( +g ` H ) ) | 
						
							| 39 | 38 | adantr |  |-  ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( +g ` R ) = ( +g ` H ) ) | 
						
							| 40 | 39 | ofeqd |  |-  ( ( ph /\ ( X e. B /\ Y e. B ) ) -> oF ( +g ` R ) = oF ( +g ` H ) ) | 
						
							| 41 | 40 | oveqd |  |-  ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( X oF ( +g ` R ) Y ) = ( X oF ( +g ` H ) Y ) ) | 
						
							| 42 | 36 41 | eqtrd |  |-  ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( X ( +g ` S ) Y ) = ( X oF ( +g ` H ) Y ) ) | 
						
							| 43 | 4 | fvexi |  |-  B e. _V | 
						
							| 44 | 5 14 | ressplusg |  |-  ( B e. _V -> ( +g ` S ) = ( +g ` P ) ) | 
						
							| 45 | 43 44 | mp1i |  |-  ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( +g ` S ) = ( +g ` P ) ) | 
						
							| 46 | 45 | oveqd |  |-  ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( X ( +g ` S ) Y ) = ( X ( +g ` P ) Y ) ) | 
						
							| 47 | 11 42 46 | 3eqtr2d |  |-  ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( X ( +g ` U ) Y ) = ( X ( +g ` P ) Y ) ) |