| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resspsr.s |  |-  S = ( I mPwSer R ) | 
						
							| 2 |  | resspsr.h |  |-  H = ( R |`s T ) | 
						
							| 3 |  | resspsr.u |  |-  U = ( I mPwSer H ) | 
						
							| 4 |  | resspsr.b |  |-  B = ( Base ` U ) | 
						
							| 5 |  | resspsr.p |  |-  P = ( S |`s B ) | 
						
							| 6 |  | resspsr.2 |  |-  ( ph -> T e. ( SubRing ` R ) ) | 
						
							| 7 |  | fvex |  |-  ( Base ` R ) e. _V | 
						
							| 8 | 2 | subrgbas |  |-  ( T e. ( SubRing ` R ) -> T = ( Base ` H ) ) | 
						
							| 9 | 6 8 | syl |  |-  ( ph -> T = ( Base ` H ) ) | 
						
							| 10 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 11 | 10 | subrgss |  |-  ( T e. ( SubRing ` R ) -> T C_ ( Base ` R ) ) | 
						
							| 12 | 6 11 | syl |  |-  ( ph -> T C_ ( Base ` R ) ) | 
						
							| 13 | 9 12 | eqsstrrd |  |-  ( ph -> ( Base ` H ) C_ ( Base ` R ) ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ph /\ I e. _V ) -> ( Base ` H ) C_ ( Base ` R ) ) | 
						
							| 15 |  | mapss |  |-  ( ( ( Base ` R ) e. _V /\ ( Base ` H ) C_ ( Base ` R ) ) -> ( ( Base ` H ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) C_ ( ( Base ` R ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) ) | 
						
							| 16 | 7 14 15 | sylancr |  |-  ( ( ph /\ I e. _V ) -> ( ( Base ` H ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) C_ ( ( Base ` R ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) ) | 
						
							| 17 |  | eqid |  |-  ( Base ` H ) = ( Base ` H ) | 
						
							| 18 |  | eqid |  |-  { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } | 
						
							| 19 |  | simpr |  |-  ( ( ph /\ I e. _V ) -> I e. _V ) | 
						
							| 20 | 3 17 18 4 19 | psrbas |  |-  ( ( ph /\ I e. _V ) -> B = ( ( Base ` H ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) ) | 
						
							| 21 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 22 | 1 10 18 21 19 | psrbas |  |-  ( ( ph /\ I e. _V ) -> ( Base ` S ) = ( ( Base ` R ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) ) | 
						
							| 23 | 16 20 22 | 3sstr4d |  |-  ( ( ph /\ I e. _V ) -> B C_ ( Base ` S ) ) | 
						
							| 24 |  | reldmpsr |  |-  Rel dom mPwSer | 
						
							| 25 | 24 | ovprc1 |  |-  ( -. I e. _V -> ( I mPwSer H ) = (/) ) | 
						
							| 26 | 3 25 | eqtrid |  |-  ( -. I e. _V -> U = (/) ) | 
						
							| 27 | 26 | adantl |  |-  ( ( ph /\ -. I e. _V ) -> U = (/) ) | 
						
							| 28 | 27 | fveq2d |  |-  ( ( ph /\ -. I e. _V ) -> ( Base ` U ) = ( Base ` (/) ) ) | 
						
							| 29 |  | base0 |  |-  (/) = ( Base ` (/) ) | 
						
							| 30 | 28 4 29 | 3eqtr4g |  |-  ( ( ph /\ -. I e. _V ) -> B = (/) ) | 
						
							| 31 |  | 0ss |  |-  (/) C_ ( Base ` S ) | 
						
							| 32 | 30 31 | eqsstrdi |  |-  ( ( ph /\ -. I e. _V ) -> B C_ ( Base ` S ) ) | 
						
							| 33 | 23 32 | pm2.61dan |  |-  ( ph -> B C_ ( Base ` S ) ) | 
						
							| 34 | 5 21 | ressbas2 |  |-  ( B C_ ( Base ` S ) -> B = ( Base ` P ) ) | 
						
							| 35 | 33 34 | syl |  |-  ( ph -> B = ( Base ` P ) ) |