Step |
Hyp |
Ref |
Expression |
1 |
|
resspsr.s |
|- S = ( I mPwSer R ) |
2 |
|
resspsr.h |
|- H = ( R |`s T ) |
3 |
|
resspsr.u |
|- U = ( I mPwSer H ) |
4 |
|
resspsr.b |
|- B = ( Base ` U ) |
5 |
|
resspsr.p |
|- P = ( S |`s B ) |
6 |
|
resspsr.2 |
|- ( ph -> T e. ( SubRing ` R ) ) |
7 |
|
eqid |
|- ( .s ` U ) = ( .s ` U ) |
8 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
9 |
|
eqid |
|- ( .r ` H ) = ( .r ` H ) |
10 |
|
eqid |
|- { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
11 |
|
simprl |
|- ( ( ph /\ ( X e. T /\ Y e. B ) ) -> X e. T ) |
12 |
6
|
adantr |
|- ( ( ph /\ ( X e. T /\ Y e. B ) ) -> T e. ( SubRing ` R ) ) |
13 |
2
|
subrgbas |
|- ( T e. ( SubRing ` R ) -> T = ( Base ` H ) ) |
14 |
12 13
|
syl |
|- ( ( ph /\ ( X e. T /\ Y e. B ) ) -> T = ( Base ` H ) ) |
15 |
11 14
|
eleqtrd |
|- ( ( ph /\ ( X e. T /\ Y e. B ) ) -> X e. ( Base ` H ) ) |
16 |
|
simprr |
|- ( ( ph /\ ( X e. T /\ Y e. B ) ) -> Y e. B ) |
17 |
3 7 8 4 9 10 15 16
|
psrvsca |
|- ( ( ph /\ ( X e. T /\ Y e. B ) ) -> ( X ( .s ` U ) Y ) = ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { X } ) oF ( .r ` H ) Y ) ) |
18 |
|
eqid |
|- ( .s ` S ) = ( .s ` S ) |
19 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
20 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
21 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
22 |
19
|
subrgss |
|- ( T e. ( SubRing ` R ) -> T C_ ( Base ` R ) ) |
23 |
12 22
|
syl |
|- ( ( ph /\ ( X e. T /\ Y e. B ) ) -> T C_ ( Base ` R ) ) |
24 |
23 11
|
sseldd |
|- ( ( ph /\ ( X e. T /\ Y e. B ) ) -> X e. ( Base ` R ) ) |
25 |
1 2 3 4 5 6
|
resspsrbas |
|- ( ph -> B = ( Base ` P ) ) |
26 |
5 20
|
ressbasss |
|- ( Base ` P ) C_ ( Base ` S ) |
27 |
25 26
|
eqsstrdi |
|- ( ph -> B C_ ( Base ` S ) ) |
28 |
27
|
adantr |
|- ( ( ph /\ ( X e. T /\ Y e. B ) ) -> B C_ ( Base ` S ) ) |
29 |
28 16
|
sseldd |
|- ( ( ph /\ ( X e. T /\ Y e. B ) ) -> Y e. ( Base ` S ) ) |
30 |
1 18 19 20 21 10 24 29
|
psrvsca |
|- ( ( ph /\ ( X e. T /\ Y e. B ) ) -> ( X ( .s ` S ) Y ) = ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { X } ) oF ( .r ` R ) Y ) ) |
31 |
2 21
|
ressmulr |
|- ( T e. ( SubRing ` R ) -> ( .r ` R ) = ( .r ` H ) ) |
32 |
|
ofeq |
|- ( ( .r ` R ) = ( .r ` H ) -> oF ( .r ` R ) = oF ( .r ` H ) ) |
33 |
12 31 32
|
3syl |
|- ( ( ph /\ ( X e. T /\ Y e. B ) ) -> oF ( .r ` R ) = oF ( .r ` H ) ) |
34 |
33
|
oveqd |
|- ( ( ph /\ ( X e. T /\ Y e. B ) ) -> ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { X } ) oF ( .r ` R ) Y ) = ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { X } ) oF ( .r ` H ) Y ) ) |
35 |
30 34
|
eqtrd |
|- ( ( ph /\ ( X e. T /\ Y e. B ) ) -> ( X ( .s ` S ) Y ) = ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { X } ) oF ( .r ` H ) Y ) ) |
36 |
4
|
fvexi |
|- B e. _V |
37 |
5 18
|
ressvsca |
|- ( B e. _V -> ( .s ` S ) = ( .s ` P ) ) |
38 |
36 37
|
mp1i |
|- ( ( ph /\ ( X e. T /\ Y e. B ) ) -> ( .s ` S ) = ( .s ` P ) ) |
39 |
38
|
oveqd |
|- ( ( ph /\ ( X e. T /\ Y e. B ) ) -> ( X ( .s ` S ) Y ) = ( X ( .s ` P ) Y ) ) |
40 |
17 35 39
|
3eqtr2d |
|- ( ( ph /\ ( X e. T /\ Y e. B ) ) -> ( X ( .s ` U ) Y ) = ( X ( .s ` P ) Y ) ) |