| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resspsr.s |  |-  S = ( I mPwSer R ) | 
						
							| 2 |  | resspsr.h |  |-  H = ( R |`s T ) | 
						
							| 3 |  | resspsr.u |  |-  U = ( I mPwSer H ) | 
						
							| 4 |  | resspsr.b |  |-  B = ( Base ` U ) | 
						
							| 5 |  | resspsr.p |  |-  P = ( S |`s B ) | 
						
							| 6 |  | resspsr.2 |  |-  ( ph -> T e. ( SubRing ` R ) ) | 
						
							| 7 |  | eqid |  |-  ( .s ` U ) = ( .s ` U ) | 
						
							| 8 |  | eqid |  |-  ( Base ` H ) = ( Base ` H ) | 
						
							| 9 |  | eqid |  |-  ( .r ` H ) = ( .r ` H ) | 
						
							| 10 |  | eqid |  |-  { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } | 
						
							| 11 |  | simprl |  |-  ( ( ph /\ ( X e. T /\ Y e. B ) ) -> X e. T ) | 
						
							| 12 | 6 | adantr |  |-  ( ( ph /\ ( X e. T /\ Y e. B ) ) -> T e. ( SubRing ` R ) ) | 
						
							| 13 | 2 | subrgbas |  |-  ( T e. ( SubRing ` R ) -> T = ( Base ` H ) ) | 
						
							| 14 | 12 13 | syl |  |-  ( ( ph /\ ( X e. T /\ Y e. B ) ) -> T = ( Base ` H ) ) | 
						
							| 15 | 11 14 | eleqtrd |  |-  ( ( ph /\ ( X e. T /\ Y e. B ) ) -> X e. ( Base ` H ) ) | 
						
							| 16 |  | simprr |  |-  ( ( ph /\ ( X e. T /\ Y e. B ) ) -> Y e. B ) | 
						
							| 17 | 3 7 8 4 9 10 15 16 | psrvsca |  |-  ( ( ph /\ ( X e. T /\ Y e. B ) ) -> ( X ( .s ` U ) Y ) = ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { X } ) oF ( .r ` H ) Y ) ) | 
						
							| 18 |  | eqid |  |-  ( .s ` S ) = ( .s ` S ) | 
						
							| 19 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 20 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 21 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 22 | 19 | subrgss |  |-  ( T e. ( SubRing ` R ) -> T C_ ( Base ` R ) ) | 
						
							| 23 | 12 22 | syl |  |-  ( ( ph /\ ( X e. T /\ Y e. B ) ) -> T C_ ( Base ` R ) ) | 
						
							| 24 | 23 11 | sseldd |  |-  ( ( ph /\ ( X e. T /\ Y e. B ) ) -> X e. ( Base ` R ) ) | 
						
							| 25 | 1 2 3 4 5 6 | resspsrbas |  |-  ( ph -> B = ( Base ` P ) ) | 
						
							| 26 | 5 20 | ressbasss |  |-  ( Base ` P ) C_ ( Base ` S ) | 
						
							| 27 | 25 26 | eqsstrdi |  |-  ( ph -> B C_ ( Base ` S ) ) | 
						
							| 28 | 27 | adantr |  |-  ( ( ph /\ ( X e. T /\ Y e. B ) ) -> B C_ ( Base ` S ) ) | 
						
							| 29 | 28 16 | sseldd |  |-  ( ( ph /\ ( X e. T /\ Y e. B ) ) -> Y e. ( Base ` S ) ) | 
						
							| 30 | 1 18 19 20 21 10 24 29 | psrvsca |  |-  ( ( ph /\ ( X e. T /\ Y e. B ) ) -> ( X ( .s ` S ) Y ) = ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { X } ) oF ( .r ` R ) Y ) ) | 
						
							| 31 | 2 21 | ressmulr |  |-  ( T e. ( SubRing ` R ) -> ( .r ` R ) = ( .r ` H ) ) | 
						
							| 32 |  | ofeq |  |-  ( ( .r ` R ) = ( .r ` H ) -> oF ( .r ` R ) = oF ( .r ` H ) ) | 
						
							| 33 | 12 31 32 | 3syl |  |-  ( ( ph /\ ( X e. T /\ Y e. B ) ) -> oF ( .r ` R ) = oF ( .r ` H ) ) | 
						
							| 34 | 33 | oveqd |  |-  ( ( ph /\ ( X e. T /\ Y e. B ) ) -> ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { X } ) oF ( .r ` R ) Y ) = ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { X } ) oF ( .r ` H ) Y ) ) | 
						
							| 35 | 30 34 | eqtrd |  |-  ( ( ph /\ ( X e. T /\ Y e. B ) ) -> ( X ( .s ` S ) Y ) = ( ( { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } X. { X } ) oF ( .r ` H ) Y ) ) | 
						
							| 36 | 4 | fvexi |  |-  B e. _V | 
						
							| 37 | 5 18 | ressvsca |  |-  ( B e. _V -> ( .s ` S ) = ( .s ` P ) ) | 
						
							| 38 | 36 37 | mp1i |  |-  ( ( ph /\ ( X e. T /\ Y e. B ) ) -> ( .s ` S ) = ( .s ` P ) ) | 
						
							| 39 | 38 | oveqd |  |-  ( ( ph /\ ( X e. T /\ Y e. B ) ) -> ( X ( .s ` S ) Y ) = ( X ( .s ` P ) Y ) ) | 
						
							| 40 | 17 35 39 | 3eqtr2d |  |-  ( ( ph /\ ( X e. T /\ Y e. B ) ) -> ( X ( .s ` U ) Y ) = ( X ( .s ` P ) Y ) ) |