Step |
Hyp |
Ref |
Expression |
1 |
|
resspwsds.y |
|- ( ph -> Y = ( R ^s I ) ) |
2 |
|
resspwsds.h |
|- ( ph -> H = ( ( R |`s A ) ^s I ) ) |
3 |
|
resspwsds.b |
|- B = ( Base ` H ) |
4 |
|
resspwsds.d |
|- D = ( dist ` Y ) |
5 |
|
resspwsds.e |
|- E = ( dist ` H ) |
6 |
|
resspwsds.i |
|- ( ph -> I e. V ) |
7 |
|
resspwsds.r |
|- ( ph -> R e. W ) |
8 |
|
resspwsds.a |
|- ( ph -> A e. X ) |
9 |
|
eqid |
|- ( R ^s I ) = ( R ^s I ) |
10 |
|
eqid |
|- ( Scalar ` R ) = ( Scalar ` R ) |
11 |
9 10
|
pwsval |
|- ( ( R e. W /\ I e. V ) -> ( R ^s I ) = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
12 |
7 6 11
|
syl2anc |
|- ( ph -> ( R ^s I ) = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
13 |
|
fconstmpt |
|- ( I X. { R } ) = ( x e. I |-> R ) |
14 |
13
|
oveq2i |
|- ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) = ( ( Scalar ` R ) Xs_ ( x e. I |-> R ) ) |
15 |
12 14
|
eqtrdi |
|- ( ph -> ( R ^s I ) = ( ( Scalar ` R ) Xs_ ( x e. I |-> R ) ) ) |
16 |
1 15
|
eqtrd |
|- ( ph -> Y = ( ( Scalar ` R ) Xs_ ( x e. I |-> R ) ) ) |
17 |
|
ovex |
|- ( R |`s A ) e. _V |
18 |
|
eqid |
|- ( ( R |`s A ) ^s I ) = ( ( R |`s A ) ^s I ) |
19 |
|
eqid |
|- ( Scalar ` ( R |`s A ) ) = ( Scalar ` ( R |`s A ) ) |
20 |
18 19
|
pwsval |
|- ( ( ( R |`s A ) e. _V /\ I e. V ) -> ( ( R |`s A ) ^s I ) = ( ( Scalar ` ( R |`s A ) ) Xs_ ( I X. { ( R |`s A ) } ) ) ) |
21 |
17 6 20
|
sylancr |
|- ( ph -> ( ( R |`s A ) ^s I ) = ( ( Scalar ` ( R |`s A ) ) Xs_ ( I X. { ( R |`s A ) } ) ) ) |
22 |
|
fconstmpt |
|- ( I X. { ( R |`s A ) } ) = ( x e. I |-> ( R |`s A ) ) |
23 |
22
|
oveq2i |
|- ( ( Scalar ` ( R |`s A ) ) Xs_ ( I X. { ( R |`s A ) } ) ) = ( ( Scalar ` ( R |`s A ) ) Xs_ ( x e. I |-> ( R |`s A ) ) ) |
24 |
21 23
|
eqtrdi |
|- ( ph -> ( ( R |`s A ) ^s I ) = ( ( Scalar ` ( R |`s A ) ) Xs_ ( x e. I |-> ( R |`s A ) ) ) ) |
25 |
2 24
|
eqtrd |
|- ( ph -> H = ( ( Scalar ` ( R |`s A ) ) Xs_ ( x e. I |-> ( R |`s A ) ) ) ) |
26 |
|
fvexd |
|- ( ph -> ( Scalar ` R ) e. _V ) |
27 |
|
fvexd |
|- ( ph -> ( Scalar ` ( R |`s A ) ) e. _V ) |
28 |
7
|
adantr |
|- ( ( ph /\ x e. I ) -> R e. W ) |
29 |
8
|
adantr |
|- ( ( ph /\ x e. I ) -> A e. X ) |
30 |
16 25 3 4 5 26 27 6 28 29
|
ressprdsds |
|- ( ph -> E = ( D |` ( B X. B ) ) ) |