| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resspwsds.y |  |-  ( ph -> Y = ( R ^s I ) ) | 
						
							| 2 |  | resspwsds.h |  |-  ( ph -> H = ( ( R |`s A ) ^s I ) ) | 
						
							| 3 |  | resspwsds.b |  |-  B = ( Base ` H ) | 
						
							| 4 |  | resspwsds.d |  |-  D = ( dist ` Y ) | 
						
							| 5 |  | resspwsds.e |  |-  E = ( dist ` H ) | 
						
							| 6 |  | resspwsds.i |  |-  ( ph -> I e. V ) | 
						
							| 7 |  | resspwsds.r |  |-  ( ph -> R e. W ) | 
						
							| 8 |  | resspwsds.a |  |-  ( ph -> A e. X ) | 
						
							| 9 |  | eqid |  |-  ( R ^s I ) = ( R ^s I ) | 
						
							| 10 |  | eqid |  |-  ( Scalar ` R ) = ( Scalar ` R ) | 
						
							| 11 | 9 10 | pwsval |  |-  ( ( R e. W /\ I e. V ) -> ( R ^s I ) = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) | 
						
							| 12 | 7 6 11 | syl2anc |  |-  ( ph -> ( R ^s I ) = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) | 
						
							| 13 |  | fconstmpt |  |-  ( I X. { R } ) = ( x e. I |-> R ) | 
						
							| 14 | 13 | oveq2i |  |-  ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) = ( ( Scalar ` R ) Xs_ ( x e. I |-> R ) ) | 
						
							| 15 | 12 14 | eqtrdi |  |-  ( ph -> ( R ^s I ) = ( ( Scalar ` R ) Xs_ ( x e. I |-> R ) ) ) | 
						
							| 16 | 1 15 | eqtrd |  |-  ( ph -> Y = ( ( Scalar ` R ) Xs_ ( x e. I |-> R ) ) ) | 
						
							| 17 |  | ovex |  |-  ( R |`s A ) e. _V | 
						
							| 18 |  | eqid |  |-  ( ( R |`s A ) ^s I ) = ( ( R |`s A ) ^s I ) | 
						
							| 19 |  | eqid |  |-  ( Scalar ` ( R |`s A ) ) = ( Scalar ` ( R |`s A ) ) | 
						
							| 20 | 18 19 | pwsval |  |-  ( ( ( R |`s A ) e. _V /\ I e. V ) -> ( ( R |`s A ) ^s I ) = ( ( Scalar ` ( R |`s A ) ) Xs_ ( I X. { ( R |`s A ) } ) ) ) | 
						
							| 21 | 17 6 20 | sylancr |  |-  ( ph -> ( ( R |`s A ) ^s I ) = ( ( Scalar ` ( R |`s A ) ) Xs_ ( I X. { ( R |`s A ) } ) ) ) | 
						
							| 22 |  | fconstmpt |  |-  ( I X. { ( R |`s A ) } ) = ( x e. I |-> ( R |`s A ) ) | 
						
							| 23 | 22 | oveq2i |  |-  ( ( Scalar ` ( R |`s A ) ) Xs_ ( I X. { ( R |`s A ) } ) ) = ( ( Scalar ` ( R |`s A ) ) Xs_ ( x e. I |-> ( R |`s A ) ) ) | 
						
							| 24 | 21 23 | eqtrdi |  |-  ( ph -> ( ( R |`s A ) ^s I ) = ( ( Scalar ` ( R |`s A ) ) Xs_ ( x e. I |-> ( R |`s A ) ) ) ) | 
						
							| 25 | 2 24 | eqtrd |  |-  ( ph -> H = ( ( Scalar ` ( R |`s A ) ) Xs_ ( x e. I |-> ( R |`s A ) ) ) ) | 
						
							| 26 |  | fvexd |  |-  ( ph -> ( Scalar ` R ) e. _V ) | 
						
							| 27 |  | fvexd |  |-  ( ph -> ( Scalar ` ( R |`s A ) ) e. _V ) | 
						
							| 28 | 7 | adantr |  |-  ( ( ph /\ x e. I ) -> R e. W ) | 
						
							| 29 | 8 | adantr |  |-  ( ( ph /\ x e. I ) -> A e. X ) | 
						
							| 30 | 16 25 3 4 5 26 27 6 28 29 | ressprdsds |  |-  ( ph -> E = ( D |` ( B X. B ) ) ) |