| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simplr |
|- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> -. ( Base ` W ) C_ A ) |
| 2 |
|
simpr1 |
|- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> W e. _V ) |
| 3 |
|
simpr2 |
|- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> A e. X ) |
| 4 |
|
eqid |
|- ( W |`s A ) = ( W |`s A ) |
| 5 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 6 |
4 5
|
ressval2 |
|- ( ( -. ( Base ` W ) C_ A /\ W e. _V /\ A e. X ) -> ( W |`s A ) = ( W sSet <. ( Base ` ndx ) , ( A i^i ( Base ` W ) ) >. ) ) |
| 7 |
1 2 3 6
|
syl3anc |
|- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( W |`s A ) = ( W sSet <. ( Base ` ndx ) , ( A i^i ( Base ` W ) ) >. ) ) |
| 8 |
|
inass |
|- ( ( A i^i B ) i^i ( Base ` W ) ) = ( A i^i ( B i^i ( Base ` W ) ) ) |
| 9 |
|
in12 |
|- ( A i^i ( B i^i ( Base ` W ) ) ) = ( B i^i ( A i^i ( Base ` W ) ) ) |
| 10 |
8 9
|
eqtri |
|- ( ( A i^i B ) i^i ( Base ` W ) ) = ( B i^i ( A i^i ( Base ` W ) ) ) |
| 11 |
4 5
|
ressbas |
|- ( A e. X -> ( A i^i ( Base ` W ) ) = ( Base ` ( W |`s A ) ) ) |
| 12 |
3 11
|
syl |
|- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( A i^i ( Base ` W ) ) = ( Base ` ( W |`s A ) ) ) |
| 13 |
12
|
ineq2d |
|- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( B i^i ( A i^i ( Base ` W ) ) ) = ( B i^i ( Base ` ( W |`s A ) ) ) ) |
| 14 |
10 13
|
eqtr2id |
|- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( B i^i ( Base ` ( W |`s A ) ) ) = ( ( A i^i B ) i^i ( Base ` W ) ) ) |
| 15 |
14
|
opeq2d |
|- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> <. ( Base ` ndx ) , ( B i^i ( Base ` ( W |`s A ) ) ) >. = <. ( Base ` ndx ) , ( ( A i^i B ) i^i ( Base ` W ) ) >. ) |
| 16 |
7 15
|
oveq12d |
|- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( ( W |`s A ) sSet <. ( Base ` ndx ) , ( B i^i ( Base ` ( W |`s A ) ) ) >. ) = ( ( W sSet <. ( Base ` ndx ) , ( A i^i ( Base ` W ) ) >. ) sSet <. ( Base ` ndx ) , ( ( A i^i B ) i^i ( Base ` W ) ) >. ) ) |
| 17 |
|
fvex |
|- ( Base ` W ) e. _V |
| 18 |
17
|
inex2 |
|- ( ( A i^i B ) i^i ( Base ` W ) ) e. _V |
| 19 |
|
setsabs |
|- ( ( W e. _V /\ ( ( A i^i B ) i^i ( Base ` W ) ) e. _V ) -> ( ( W sSet <. ( Base ` ndx ) , ( A i^i ( Base ` W ) ) >. ) sSet <. ( Base ` ndx ) , ( ( A i^i B ) i^i ( Base ` W ) ) >. ) = ( W sSet <. ( Base ` ndx ) , ( ( A i^i B ) i^i ( Base ` W ) ) >. ) ) |
| 20 |
2 18 19
|
sylancl |
|- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( ( W sSet <. ( Base ` ndx ) , ( A i^i ( Base ` W ) ) >. ) sSet <. ( Base ` ndx ) , ( ( A i^i B ) i^i ( Base ` W ) ) >. ) = ( W sSet <. ( Base ` ndx ) , ( ( A i^i B ) i^i ( Base ` W ) ) >. ) ) |
| 21 |
16 20
|
eqtrd |
|- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( ( W |`s A ) sSet <. ( Base ` ndx ) , ( B i^i ( Base ` ( W |`s A ) ) ) >. ) = ( W sSet <. ( Base ` ndx ) , ( ( A i^i B ) i^i ( Base ` W ) ) >. ) ) |
| 22 |
|
simpll |
|- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> -. ( Base ` ( W |`s A ) ) C_ B ) |
| 23 |
|
ovexd |
|- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( W |`s A ) e. _V ) |
| 24 |
|
simpr3 |
|- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> B e. Y ) |
| 25 |
|
eqid |
|- ( ( W |`s A ) |`s B ) = ( ( W |`s A ) |`s B ) |
| 26 |
|
eqid |
|- ( Base ` ( W |`s A ) ) = ( Base ` ( W |`s A ) ) |
| 27 |
25 26
|
ressval2 |
|- ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ ( W |`s A ) e. _V /\ B e. Y ) -> ( ( W |`s A ) |`s B ) = ( ( W |`s A ) sSet <. ( Base ` ndx ) , ( B i^i ( Base ` ( W |`s A ) ) ) >. ) ) |
| 28 |
22 23 24 27
|
syl3anc |
|- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( ( W |`s A ) |`s B ) = ( ( W |`s A ) sSet <. ( Base ` ndx ) , ( B i^i ( Base ` ( W |`s A ) ) ) >. ) ) |
| 29 |
|
inss1 |
|- ( A i^i B ) C_ A |
| 30 |
|
sstr |
|- ( ( ( Base ` W ) C_ ( A i^i B ) /\ ( A i^i B ) C_ A ) -> ( Base ` W ) C_ A ) |
| 31 |
29 30
|
mpan2 |
|- ( ( Base ` W ) C_ ( A i^i B ) -> ( Base ` W ) C_ A ) |
| 32 |
1 31
|
nsyl |
|- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> -. ( Base ` W ) C_ ( A i^i B ) ) |
| 33 |
|
inex1g |
|- ( A e. X -> ( A i^i B ) e. _V ) |
| 34 |
3 33
|
syl |
|- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( A i^i B ) e. _V ) |
| 35 |
|
eqid |
|- ( W |`s ( A i^i B ) ) = ( W |`s ( A i^i B ) ) |
| 36 |
35 5
|
ressval2 |
|- ( ( -. ( Base ` W ) C_ ( A i^i B ) /\ W e. _V /\ ( A i^i B ) e. _V ) -> ( W |`s ( A i^i B ) ) = ( W sSet <. ( Base ` ndx ) , ( ( A i^i B ) i^i ( Base ` W ) ) >. ) ) |
| 37 |
32 2 34 36
|
syl3anc |
|- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( W |`s ( A i^i B ) ) = ( W sSet <. ( Base ` ndx ) , ( ( A i^i B ) i^i ( Base ` W ) ) >. ) ) |
| 38 |
21 28 37
|
3eqtr4d |
|- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( ( W |`s A ) |`s B ) = ( W |`s ( A i^i B ) ) ) |
| 39 |
38
|
exp31 |
|- ( -. ( Base ` ( W |`s A ) ) C_ B -> ( -. ( Base ` W ) C_ A -> ( ( W e. _V /\ A e. X /\ B e. Y ) -> ( ( W |`s A ) |`s B ) = ( W |`s ( A i^i B ) ) ) ) ) |
| 40 |
|
ovex |
|- ( W |`s A ) e. _V |
| 41 |
25 26
|
ressid2 |
|- ( ( ( Base ` ( W |`s A ) ) C_ B /\ ( W |`s A ) e. _V /\ B e. Y ) -> ( ( W |`s A ) |`s B ) = ( W |`s A ) ) |
| 42 |
40 41
|
mp3an2 |
|- ( ( ( Base ` ( W |`s A ) ) C_ B /\ B e. Y ) -> ( ( W |`s A ) |`s B ) = ( W |`s A ) ) |
| 43 |
42
|
3ad2antr3 |
|- ( ( ( Base ` ( W |`s A ) ) C_ B /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( ( W |`s A ) |`s B ) = ( W |`s A ) ) |
| 44 |
|
in32 |
|- ( ( A i^i B ) i^i ( Base ` W ) ) = ( ( A i^i ( Base ` W ) ) i^i B ) |
| 45 |
|
simpr2 |
|- ( ( ( Base ` ( W |`s A ) ) C_ B /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> A e. X ) |
| 46 |
45 11
|
syl |
|- ( ( ( Base ` ( W |`s A ) ) C_ B /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( A i^i ( Base ` W ) ) = ( Base ` ( W |`s A ) ) ) |
| 47 |
|
simpl |
|- ( ( ( Base ` ( W |`s A ) ) C_ B /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( Base ` ( W |`s A ) ) C_ B ) |
| 48 |
46 47
|
eqsstrd |
|- ( ( ( Base ` ( W |`s A ) ) C_ B /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( A i^i ( Base ` W ) ) C_ B ) |
| 49 |
|
dfss2 |
|- ( ( A i^i ( Base ` W ) ) C_ B <-> ( ( A i^i ( Base ` W ) ) i^i B ) = ( A i^i ( Base ` W ) ) ) |
| 50 |
48 49
|
sylib |
|- ( ( ( Base ` ( W |`s A ) ) C_ B /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( ( A i^i ( Base ` W ) ) i^i B ) = ( A i^i ( Base ` W ) ) ) |
| 51 |
44 50
|
eqtr2id |
|- ( ( ( Base ` ( W |`s A ) ) C_ B /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( A i^i ( Base ` W ) ) = ( ( A i^i B ) i^i ( Base ` W ) ) ) |
| 52 |
51
|
oveq2d |
|- ( ( ( Base ` ( W |`s A ) ) C_ B /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( W |`s ( A i^i ( Base ` W ) ) ) = ( W |`s ( ( A i^i B ) i^i ( Base ` W ) ) ) ) |
| 53 |
5
|
ressinbas |
|- ( A e. X -> ( W |`s A ) = ( W |`s ( A i^i ( Base ` W ) ) ) ) |
| 54 |
45 53
|
syl |
|- ( ( ( Base ` ( W |`s A ) ) C_ B /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( W |`s A ) = ( W |`s ( A i^i ( Base ` W ) ) ) ) |
| 55 |
5
|
ressinbas |
|- ( ( A i^i B ) e. _V -> ( W |`s ( A i^i B ) ) = ( W |`s ( ( A i^i B ) i^i ( Base ` W ) ) ) ) |
| 56 |
45 33 55
|
3syl |
|- ( ( ( Base ` ( W |`s A ) ) C_ B /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( W |`s ( A i^i B ) ) = ( W |`s ( ( A i^i B ) i^i ( Base ` W ) ) ) ) |
| 57 |
52 54 56
|
3eqtr4d |
|- ( ( ( Base ` ( W |`s A ) ) C_ B /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( W |`s A ) = ( W |`s ( A i^i B ) ) ) |
| 58 |
43 57
|
eqtrd |
|- ( ( ( Base ` ( W |`s A ) ) C_ B /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( ( W |`s A ) |`s B ) = ( W |`s ( A i^i B ) ) ) |
| 59 |
58
|
ex |
|- ( ( Base ` ( W |`s A ) ) C_ B -> ( ( W e. _V /\ A e. X /\ B e. Y ) -> ( ( W |`s A ) |`s B ) = ( W |`s ( A i^i B ) ) ) ) |
| 60 |
4 5
|
ressid2 |
|- ( ( ( Base ` W ) C_ A /\ W e. _V /\ A e. X ) -> ( W |`s A ) = W ) |
| 61 |
60
|
3adant3r3 |
|- ( ( ( Base ` W ) C_ A /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( W |`s A ) = W ) |
| 62 |
61
|
oveq1d |
|- ( ( ( Base ` W ) C_ A /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( ( W |`s A ) |`s B ) = ( W |`s B ) ) |
| 63 |
|
inss2 |
|- ( B i^i ( Base ` W ) ) C_ ( Base ` W ) |
| 64 |
|
simpl |
|- ( ( ( Base ` W ) C_ A /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( Base ` W ) C_ A ) |
| 65 |
63 64
|
sstrid |
|- ( ( ( Base ` W ) C_ A /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( B i^i ( Base ` W ) ) C_ A ) |
| 66 |
|
sseqin2 |
|- ( ( B i^i ( Base ` W ) ) C_ A <-> ( A i^i ( B i^i ( Base ` W ) ) ) = ( B i^i ( Base ` W ) ) ) |
| 67 |
65 66
|
sylib |
|- ( ( ( Base ` W ) C_ A /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( A i^i ( B i^i ( Base ` W ) ) ) = ( B i^i ( Base ` W ) ) ) |
| 68 |
8 67
|
eqtr2id |
|- ( ( ( Base ` W ) C_ A /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( B i^i ( Base ` W ) ) = ( ( A i^i B ) i^i ( Base ` W ) ) ) |
| 69 |
68
|
oveq2d |
|- ( ( ( Base ` W ) C_ A /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( W |`s ( B i^i ( Base ` W ) ) ) = ( W |`s ( ( A i^i B ) i^i ( Base ` W ) ) ) ) |
| 70 |
|
simpr3 |
|- ( ( ( Base ` W ) C_ A /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> B e. Y ) |
| 71 |
5
|
ressinbas |
|- ( B e. Y -> ( W |`s B ) = ( W |`s ( B i^i ( Base ` W ) ) ) ) |
| 72 |
70 71
|
syl |
|- ( ( ( Base ` W ) C_ A /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( W |`s B ) = ( W |`s ( B i^i ( Base ` W ) ) ) ) |
| 73 |
|
simpr2 |
|- ( ( ( Base ` W ) C_ A /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> A e. X ) |
| 74 |
73 33 55
|
3syl |
|- ( ( ( Base ` W ) C_ A /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( W |`s ( A i^i B ) ) = ( W |`s ( ( A i^i B ) i^i ( Base ` W ) ) ) ) |
| 75 |
69 72 74
|
3eqtr4d |
|- ( ( ( Base ` W ) C_ A /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( W |`s B ) = ( W |`s ( A i^i B ) ) ) |
| 76 |
62 75
|
eqtrd |
|- ( ( ( Base ` W ) C_ A /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( ( W |`s A ) |`s B ) = ( W |`s ( A i^i B ) ) ) |
| 77 |
76
|
ex |
|- ( ( Base ` W ) C_ A -> ( ( W e. _V /\ A e. X /\ B e. Y ) -> ( ( W |`s A ) |`s B ) = ( W |`s ( A i^i B ) ) ) ) |
| 78 |
39 59 77
|
pm2.61ii |
|- ( ( W e. _V /\ A e. X /\ B e. Y ) -> ( ( W |`s A ) |`s B ) = ( W |`s ( A i^i B ) ) ) |
| 79 |
78
|
3expib |
|- ( W e. _V -> ( ( A e. X /\ B e. Y ) -> ( ( W |`s A ) |`s B ) = ( W |`s ( A i^i B ) ) ) ) |
| 80 |
|
ress0 |
|- ( (/) |`s B ) = (/) |
| 81 |
|
reldmress |
|- Rel dom |`s |
| 82 |
81
|
ovprc1 |
|- ( -. W e. _V -> ( W |`s A ) = (/) ) |
| 83 |
82
|
oveq1d |
|- ( -. W e. _V -> ( ( W |`s A ) |`s B ) = ( (/) |`s B ) ) |
| 84 |
81
|
ovprc1 |
|- ( -. W e. _V -> ( W |`s ( A i^i B ) ) = (/) ) |
| 85 |
80 83 84
|
3eqtr4a |
|- ( -. W e. _V -> ( ( W |`s A ) |`s B ) = ( W |`s ( A i^i B ) ) ) |
| 86 |
85
|
a1d |
|- ( -. W e. _V -> ( ( A e. X /\ B e. Y ) -> ( ( W |`s A ) |`s B ) = ( W |`s ( A i^i B ) ) ) ) |
| 87 |
79 86
|
pm2.61i |
|- ( ( A e. X /\ B e. Y ) -> ( ( W |`s A ) |`s B ) = ( W |`s ( A i^i B ) ) ) |