Step |
Hyp |
Ref |
Expression |
1 |
|
simplr |
|- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> -. ( Base ` W ) C_ A ) |
2 |
|
simpr1 |
|- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> W e. _V ) |
3 |
|
simpr2 |
|- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> A e. X ) |
4 |
|
eqid |
|- ( W |`s A ) = ( W |`s A ) |
5 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
6 |
4 5
|
ressval2 |
|- ( ( -. ( Base ` W ) C_ A /\ W e. _V /\ A e. X ) -> ( W |`s A ) = ( W sSet <. ( Base ` ndx ) , ( A i^i ( Base ` W ) ) >. ) ) |
7 |
1 2 3 6
|
syl3anc |
|- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( W |`s A ) = ( W sSet <. ( Base ` ndx ) , ( A i^i ( Base ` W ) ) >. ) ) |
8 |
|
inass |
|- ( ( A i^i B ) i^i ( Base ` W ) ) = ( A i^i ( B i^i ( Base ` W ) ) ) |
9 |
|
in12 |
|- ( A i^i ( B i^i ( Base ` W ) ) ) = ( B i^i ( A i^i ( Base ` W ) ) ) |
10 |
8 9
|
eqtri |
|- ( ( A i^i B ) i^i ( Base ` W ) ) = ( B i^i ( A i^i ( Base ` W ) ) ) |
11 |
4 5
|
ressbas |
|- ( A e. X -> ( A i^i ( Base ` W ) ) = ( Base ` ( W |`s A ) ) ) |
12 |
3 11
|
syl |
|- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( A i^i ( Base ` W ) ) = ( Base ` ( W |`s A ) ) ) |
13 |
12
|
ineq2d |
|- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( B i^i ( A i^i ( Base ` W ) ) ) = ( B i^i ( Base ` ( W |`s A ) ) ) ) |
14 |
10 13
|
eqtr2id |
|- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( B i^i ( Base ` ( W |`s A ) ) ) = ( ( A i^i B ) i^i ( Base ` W ) ) ) |
15 |
14
|
opeq2d |
|- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> <. ( Base ` ndx ) , ( B i^i ( Base ` ( W |`s A ) ) ) >. = <. ( Base ` ndx ) , ( ( A i^i B ) i^i ( Base ` W ) ) >. ) |
16 |
7 15
|
oveq12d |
|- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( ( W |`s A ) sSet <. ( Base ` ndx ) , ( B i^i ( Base ` ( W |`s A ) ) ) >. ) = ( ( W sSet <. ( Base ` ndx ) , ( A i^i ( Base ` W ) ) >. ) sSet <. ( Base ` ndx ) , ( ( A i^i B ) i^i ( Base ` W ) ) >. ) ) |
17 |
|
fvex |
|- ( Base ` W ) e. _V |
18 |
17
|
inex2 |
|- ( ( A i^i B ) i^i ( Base ` W ) ) e. _V |
19 |
|
setsabs |
|- ( ( W e. _V /\ ( ( A i^i B ) i^i ( Base ` W ) ) e. _V ) -> ( ( W sSet <. ( Base ` ndx ) , ( A i^i ( Base ` W ) ) >. ) sSet <. ( Base ` ndx ) , ( ( A i^i B ) i^i ( Base ` W ) ) >. ) = ( W sSet <. ( Base ` ndx ) , ( ( A i^i B ) i^i ( Base ` W ) ) >. ) ) |
20 |
2 18 19
|
sylancl |
|- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( ( W sSet <. ( Base ` ndx ) , ( A i^i ( Base ` W ) ) >. ) sSet <. ( Base ` ndx ) , ( ( A i^i B ) i^i ( Base ` W ) ) >. ) = ( W sSet <. ( Base ` ndx ) , ( ( A i^i B ) i^i ( Base ` W ) ) >. ) ) |
21 |
16 20
|
eqtrd |
|- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( ( W |`s A ) sSet <. ( Base ` ndx ) , ( B i^i ( Base ` ( W |`s A ) ) ) >. ) = ( W sSet <. ( Base ` ndx ) , ( ( A i^i B ) i^i ( Base ` W ) ) >. ) ) |
22 |
|
simpll |
|- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> -. ( Base ` ( W |`s A ) ) C_ B ) |
23 |
|
ovexd |
|- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( W |`s A ) e. _V ) |
24 |
|
simpr3 |
|- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> B e. Y ) |
25 |
|
eqid |
|- ( ( W |`s A ) |`s B ) = ( ( W |`s A ) |`s B ) |
26 |
|
eqid |
|- ( Base ` ( W |`s A ) ) = ( Base ` ( W |`s A ) ) |
27 |
25 26
|
ressval2 |
|- ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ ( W |`s A ) e. _V /\ B e. Y ) -> ( ( W |`s A ) |`s B ) = ( ( W |`s A ) sSet <. ( Base ` ndx ) , ( B i^i ( Base ` ( W |`s A ) ) ) >. ) ) |
28 |
22 23 24 27
|
syl3anc |
|- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( ( W |`s A ) |`s B ) = ( ( W |`s A ) sSet <. ( Base ` ndx ) , ( B i^i ( Base ` ( W |`s A ) ) ) >. ) ) |
29 |
|
inss1 |
|- ( A i^i B ) C_ A |
30 |
|
sstr |
|- ( ( ( Base ` W ) C_ ( A i^i B ) /\ ( A i^i B ) C_ A ) -> ( Base ` W ) C_ A ) |
31 |
29 30
|
mpan2 |
|- ( ( Base ` W ) C_ ( A i^i B ) -> ( Base ` W ) C_ A ) |
32 |
1 31
|
nsyl |
|- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> -. ( Base ` W ) C_ ( A i^i B ) ) |
33 |
|
inex1g |
|- ( A e. X -> ( A i^i B ) e. _V ) |
34 |
3 33
|
syl |
|- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( A i^i B ) e. _V ) |
35 |
|
eqid |
|- ( W |`s ( A i^i B ) ) = ( W |`s ( A i^i B ) ) |
36 |
35 5
|
ressval2 |
|- ( ( -. ( Base ` W ) C_ ( A i^i B ) /\ W e. _V /\ ( A i^i B ) e. _V ) -> ( W |`s ( A i^i B ) ) = ( W sSet <. ( Base ` ndx ) , ( ( A i^i B ) i^i ( Base ` W ) ) >. ) ) |
37 |
32 2 34 36
|
syl3anc |
|- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( W |`s ( A i^i B ) ) = ( W sSet <. ( Base ` ndx ) , ( ( A i^i B ) i^i ( Base ` W ) ) >. ) ) |
38 |
21 28 37
|
3eqtr4d |
|- ( ( ( -. ( Base ` ( W |`s A ) ) C_ B /\ -. ( Base ` W ) C_ A ) /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( ( W |`s A ) |`s B ) = ( W |`s ( A i^i B ) ) ) |
39 |
38
|
exp31 |
|- ( -. ( Base ` ( W |`s A ) ) C_ B -> ( -. ( Base ` W ) C_ A -> ( ( W e. _V /\ A e. X /\ B e. Y ) -> ( ( W |`s A ) |`s B ) = ( W |`s ( A i^i B ) ) ) ) ) |
40 |
|
ovex |
|- ( W |`s A ) e. _V |
41 |
25 26
|
ressid2 |
|- ( ( ( Base ` ( W |`s A ) ) C_ B /\ ( W |`s A ) e. _V /\ B e. Y ) -> ( ( W |`s A ) |`s B ) = ( W |`s A ) ) |
42 |
40 41
|
mp3an2 |
|- ( ( ( Base ` ( W |`s A ) ) C_ B /\ B e. Y ) -> ( ( W |`s A ) |`s B ) = ( W |`s A ) ) |
43 |
42
|
3ad2antr3 |
|- ( ( ( Base ` ( W |`s A ) ) C_ B /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( ( W |`s A ) |`s B ) = ( W |`s A ) ) |
44 |
|
in32 |
|- ( ( A i^i B ) i^i ( Base ` W ) ) = ( ( A i^i ( Base ` W ) ) i^i B ) |
45 |
|
simpr2 |
|- ( ( ( Base ` ( W |`s A ) ) C_ B /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> A e. X ) |
46 |
45 11
|
syl |
|- ( ( ( Base ` ( W |`s A ) ) C_ B /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( A i^i ( Base ` W ) ) = ( Base ` ( W |`s A ) ) ) |
47 |
|
simpl |
|- ( ( ( Base ` ( W |`s A ) ) C_ B /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( Base ` ( W |`s A ) ) C_ B ) |
48 |
46 47
|
eqsstrd |
|- ( ( ( Base ` ( W |`s A ) ) C_ B /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( A i^i ( Base ` W ) ) C_ B ) |
49 |
|
df-ss |
|- ( ( A i^i ( Base ` W ) ) C_ B <-> ( ( A i^i ( Base ` W ) ) i^i B ) = ( A i^i ( Base ` W ) ) ) |
50 |
48 49
|
sylib |
|- ( ( ( Base ` ( W |`s A ) ) C_ B /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( ( A i^i ( Base ` W ) ) i^i B ) = ( A i^i ( Base ` W ) ) ) |
51 |
44 50
|
eqtr2id |
|- ( ( ( Base ` ( W |`s A ) ) C_ B /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( A i^i ( Base ` W ) ) = ( ( A i^i B ) i^i ( Base ` W ) ) ) |
52 |
51
|
oveq2d |
|- ( ( ( Base ` ( W |`s A ) ) C_ B /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( W |`s ( A i^i ( Base ` W ) ) ) = ( W |`s ( ( A i^i B ) i^i ( Base ` W ) ) ) ) |
53 |
5
|
ressinbas |
|- ( A e. X -> ( W |`s A ) = ( W |`s ( A i^i ( Base ` W ) ) ) ) |
54 |
45 53
|
syl |
|- ( ( ( Base ` ( W |`s A ) ) C_ B /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( W |`s A ) = ( W |`s ( A i^i ( Base ` W ) ) ) ) |
55 |
5
|
ressinbas |
|- ( ( A i^i B ) e. _V -> ( W |`s ( A i^i B ) ) = ( W |`s ( ( A i^i B ) i^i ( Base ` W ) ) ) ) |
56 |
45 33 55
|
3syl |
|- ( ( ( Base ` ( W |`s A ) ) C_ B /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( W |`s ( A i^i B ) ) = ( W |`s ( ( A i^i B ) i^i ( Base ` W ) ) ) ) |
57 |
52 54 56
|
3eqtr4d |
|- ( ( ( Base ` ( W |`s A ) ) C_ B /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( W |`s A ) = ( W |`s ( A i^i B ) ) ) |
58 |
43 57
|
eqtrd |
|- ( ( ( Base ` ( W |`s A ) ) C_ B /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( ( W |`s A ) |`s B ) = ( W |`s ( A i^i B ) ) ) |
59 |
58
|
ex |
|- ( ( Base ` ( W |`s A ) ) C_ B -> ( ( W e. _V /\ A e. X /\ B e. Y ) -> ( ( W |`s A ) |`s B ) = ( W |`s ( A i^i B ) ) ) ) |
60 |
4 5
|
ressid2 |
|- ( ( ( Base ` W ) C_ A /\ W e. _V /\ A e. X ) -> ( W |`s A ) = W ) |
61 |
60
|
3adant3r3 |
|- ( ( ( Base ` W ) C_ A /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( W |`s A ) = W ) |
62 |
61
|
oveq1d |
|- ( ( ( Base ` W ) C_ A /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( ( W |`s A ) |`s B ) = ( W |`s B ) ) |
63 |
|
inss2 |
|- ( B i^i ( Base ` W ) ) C_ ( Base ` W ) |
64 |
|
simpl |
|- ( ( ( Base ` W ) C_ A /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( Base ` W ) C_ A ) |
65 |
63 64
|
sstrid |
|- ( ( ( Base ` W ) C_ A /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( B i^i ( Base ` W ) ) C_ A ) |
66 |
|
sseqin2 |
|- ( ( B i^i ( Base ` W ) ) C_ A <-> ( A i^i ( B i^i ( Base ` W ) ) ) = ( B i^i ( Base ` W ) ) ) |
67 |
65 66
|
sylib |
|- ( ( ( Base ` W ) C_ A /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( A i^i ( B i^i ( Base ` W ) ) ) = ( B i^i ( Base ` W ) ) ) |
68 |
8 67
|
eqtr2id |
|- ( ( ( Base ` W ) C_ A /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( B i^i ( Base ` W ) ) = ( ( A i^i B ) i^i ( Base ` W ) ) ) |
69 |
68
|
oveq2d |
|- ( ( ( Base ` W ) C_ A /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( W |`s ( B i^i ( Base ` W ) ) ) = ( W |`s ( ( A i^i B ) i^i ( Base ` W ) ) ) ) |
70 |
|
simpr3 |
|- ( ( ( Base ` W ) C_ A /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> B e. Y ) |
71 |
5
|
ressinbas |
|- ( B e. Y -> ( W |`s B ) = ( W |`s ( B i^i ( Base ` W ) ) ) ) |
72 |
70 71
|
syl |
|- ( ( ( Base ` W ) C_ A /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( W |`s B ) = ( W |`s ( B i^i ( Base ` W ) ) ) ) |
73 |
|
simpr2 |
|- ( ( ( Base ` W ) C_ A /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> A e. X ) |
74 |
73 33 55
|
3syl |
|- ( ( ( Base ` W ) C_ A /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( W |`s ( A i^i B ) ) = ( W |`s ( ( A i^i B ) i^i ( Base ` W ) ) ) ) |
75 |
69 72 74
|
3eqtr4d |
|- ( ( ( Base ` W ) C_ A /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( W |`s B ) = ( W |`s ( A i^i B ) ) ) |
76 |
62 75
|
eqtrd |
|- ( ( ( Base ` W ) C_ A /\ ( W e. _V /\ A e. X /\ B e. Y ) ) -> ( ( W |`s A ) |`s B ) = ( W |`s ( A i^i B ) ) ) |
77 |
76
|
ex |
|- ( ( Base ` W ) C_ A -> ( ( W e. _V /\ A e. X /\ B e. Y ) -> ( ( W |`s A ) |`s B ) = ( W |`s ( A i^i B ) ) ) ) |
78 |
39 59 77
|
pm2.61ii |
|- ( ( W e. _V /\ A e. X /\ B e. Y ) -> ( ( W |`s A ) |`s B ) = ( W |`s ( A i^i B ) ) ) |
79 |
78
|
3expib |
|- ( W e. _V -> ( ( A e. X /\ B e. Y ) -> ( ( W |`s A ) |`s B ) = ( W |`s ( A i^i B ) ) ) ) |
80 |
|
ress0 |
|- ( (/) |`s B ) = (/) |
81 |
|
reldmress |
|- Rel dom |`s |
82 |
81
|
ovprc1 |
|- ( -. W e. _V -> ( W |`s A ) = (/) ) |
83 |
82
|
oveq1d |
|- ( -. W e. _V -> ( ( W |`s A ) |`s B ) = ( (/) |`s B ) ) |
84 |
81
|
ovprc1 |
|- ( -. W e. _V -> ( W |`s ( A i^i B ) ) = (/) ) |
85 |
80 83 84
|
3eqtr4a |
|- ( -. W e. _V -> ( ( W |`s A ) |`s B ) = ( W |`s ( A i^i B ) ) ) |
86 |
85
|
a1d |
|- ( -. W e. _V -> ( ( A e. X /\ B e. Y ) -> ( ( W |`s A ) |`s B ) = ( W |`s ( A i^i B ) ) ) ) |
87 |
79 86
|
pm2.61i |
|- ( ( A e. X /\ B e. Y ) -> ( ( W |`s A ) |`s B ) = ( W |`s ( A i^i B ) ) ) |