Metamath Proof Explorer


Theorem resssca

Description: Scalar is unaffected by restriction. (Contributed by Mario Carneiro, 7-Dec-2014)

Ref Expression
Hypotheses resssca.1
|- H = ( G |`s A )
resssca.2
|- F = ( Scalar ` G )
Assertion resssca
|- ( A e. V -> F = ( Scalar ` H ) )

Proof

Step Hyp Ref Expression
1 resssca.1
 |-  H = ( G |`s A )
2 resssca.2
 |-  F = ( Scalar ` G )
3 scaid
 |-  Scalar = Slot ( Scalar ` ndx )
4 scandxnbasendx
 |-  ( Scalar ` ndx ) =/= ( Base ` ndx )
5 1 2 3 4 resseqnbas
 |-  ( A e. V -> F = ( Scalar ` H ) )