Step |
Hyp |
Ref |
Expression |
1 |
|
resssra.a |
|- A = ( Base ` R ) |
2 |
|
resssra.s |
|- S = ( R |`s B ) |
3 |
|
resssra.b |
|- ( ph -> B C_ A ) |
4 |
|
resssra.c |
|- ( ph -> C C_ B ) |
5 |
|
resssra.r |
|- ( ph -> R e. V ) |
6 |
|
eqidd |
|- ( ph -> ( ( subringAlg ` R ) ` C ) = ( ( subringAlg ` R ) ` C ) ) |
7 |
4 3
|
sstrd |
|- ( ph -> C C_ A ) |
8 |
7 1
|
sseqtrdi |
|- ( ph -> C C_ ( Base ` R ) ) |
9 |
6 8
|
srabase |
|- ( ph -> ( Base ` R ) = ( Base ` ( ( subringAlg ` R ) ` C ) ) ) |
10 |
1 9
|
eqtrid |
|- ( ph -> A = ( Base ` ( ( subringAlg ` R ) ` C ) ) ) |
11 |
10
|
oveq2d |
|- ( ph -> ( ( ( subringAlg ` R ) ` C ) |`s A ) = ( ( ( subringAlg ` R ) ` C ) |`s ( Base ` ( ( subringAlg ` R ) ` C ) ) ) ) |
12 |
11
|
adantr |
|- ( ( ph /\ A C_ B ) -> ( ( ( subringAlg ` R ) ` C ) |`s A ) = ( ( ( subringAlg ` R ) ` C ) |`s ( Base ` ( ( subringAlg ` R ) ` C ) ) ) ) |
13 |
|
simpr |
|- ( ( ph /\ A C_ B ) -> A C_ B ) |
14 |
3
|
adantr |
|- ( ( ph /\ A C_ B ) -> B C_ A ) |
15 |
13 14
|
eqssd |
|- ( ( ph /\ A C_ B ) -> A = B ) |
16 |
15
|
oveq2d |
|- ( ( ph /\ A C_ B ) -> ( ( ( subringAlg ` R ) ` C ) |`s A ) = ( ( ( subringAlg ` R ) ` C ) |`s B ) ) |
17 |
|
fvex |
|- ( ( subringAlg ` R ) ` C ) e. _V |
18 |
|
eqid |
|- ( Base ` ( ( subringAlg ` R ) ` C ) ) = ( Base ` ( ( subringAlg ` R ) ` C ) ) |
19 |
18
|
ressid |
|- ( ( ( subringAlg ` R ) ` C ) e. _V -> ( ( ( subringAlg ` R ) ` C ) |`s ( Base ` ( ( subringAlg ` R ) ` C ) ) ) = ( ( subringAlg ` R ) ` C ) ) |
20 |
17 19
|
mp1i |
|- ( ( ph /\ A C_ B ) -> ( ( ( subringAlg ` R ) ` C ) |`s ( Base ` ( ( subringAlg ` R ) ` C ) ) ) = ( ( subringAlg ` R ) ` C ) ) |
21 |
12 16 20
|
3eqtr3d |
|- ( ( ph /\ A C_ B ) -> ( ( ( subringAlg ` R ) ` C ) |`s B ) = ( ( subringAlg ` R ) ` C ) ) |
22 |
1
|
oveq2i |
|- ( R |`s A ) = ( R |`s ( Base ` R ) ) |
23 |
5
|
elexd |
|- ( ph -> R e. _V ) |
24 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
25 |
24
|
ressid |
|- ( R e. _V -> ( R |`s ( Base ` R ) ) = R ) |
26 |
23 25
|
syl |
|- ( ph -> ( R |`s ( Base ` R ) ) = R ) |
27 |
22 26
|
eqtrid |
|- ( ph -> ( R |`s A ) = R ) |
28 |
27
|
adantr |
|- ( ( ph /\ A C_ B ) -> ( R |`s A ) = R ) |
29 |
15
|
oveq2d |
|- ( ( ph /\ A C_ B ) -> ( R |`s A ) = ( R |`s B ) ) |
30 |
29 2
|
eqtr4di |
|- ( ( ph /\ A C_ B ) -> ( R |`s A ) = S ) |
31 |
28 30
|
eqtr3d |
|- ( ( ph /\ A C_ B ) -> R = S ) |
32 |
31
|
fveq2d |
|- ( ( ph /\ A C_ B ) -> ( subringAlg ` R ) = ( subringAlg ` S ) ) |
33 |
32
|
fveq1d |
|- ( ( ph /\ A C_ B ) -> ( ( subringAlg ` R ) ` C ) = ( ( subringAlg ` S ) ` C ) ) |
34 |
21 33
|
eqtr2d |
|- ( ( ph /\ A C_ B ) -> ( ( subringAlg ` S ) ` C ) = ( ( ( subringAlg ` R ) ` C ) |`s B ) ) |
35 |
|
simpr |
|- ( ( ph /\ -. A C_ B ) -> -. A C_ B ) |
36 |
23
|
adantr |
|- ( ( ph /\ -. A C_ B ) -> R e. _V ) |
37 |
1
|
fvexi |
|- A e. _V |
38 |
37
|
a1i |
|- ( ph -> A e. _V ) |
39 |
38 3
|
ssexd |
|- ( ph -> B e. _V ) |
40 |
39
|
adantr |
|- ( ( ph /\ -. A C_ B ) -> B e. _V ) |
41 |
2 1
|
ressval2 |
|- ( ( -. A C_ B /\ R e. _V /\ B e. _V ) -> S = ( R sSet <. ( Base ` ndx ) , ( B i^i A ) >. ) ) |
42 |
35 36 40 41
|
syl3anc |
|- ( ( ph /\ -. A C_ B ) -> S = ( R sSet <. ( Base ` ndx ) , ( B i^i A ) >. ) ) |
43 |
|
dfss2 |
|- ( B C_ A <-> ( B i^i A ) = B ) |
44 |
3 43
|
sylib |
|- ( ph -> ( B i^i A ) = B ) |
45 |
44
|
opeq2d |
|- ( ph -> <. ( Base ` ndx ) , ( B i^i A ) >. = <. ( Base ` ndx ) , B >. ) |
46 |
45
|
oveq2d |
|- ( ph -> ( R sSet <. ( Base ` ndx ) , ( B i^i A ) >. ) = ( R sSet <. ( Base ` ndx ) , B >. ) ) |
47 |
46
|
adantr |
|- ( ( ph /\ -. A C_ B ) -> ( R sSet <. ( Base ` ndx ) , ( B i^i A ) >. ) = ( R sSet <. ( Base ` ndx ) , B >. ) ) |
48 |
42 47
|
eqtrd |
|- ( ( ph /\ -. A C_ B ) -> S = ( R sSet <. ( Base ` ndx ) , B >. ) ) |
49 |
2
|
oveq1i |
|- ( S |`s C ) = ( ( R |`s B ) |`s C ) |
50 |
|
ressabs |
|- ( ( B e. _V /\ C C_ B ) -> ( ( R |`s B ) |`s C ) = ( R |`s C ) ) |
51 |
39 4 50
|
syl2anc |
|- ( ph -> ( ( R |`s B ) |`s C ) = ( R |`s C ) ) |
52 |
49 51
|
eqtrid |
|- ( ph -> ( S |`s C ) = ( R |`s C ) ) |
53 |
52
|
opeq2d |
|- ( ph -> <. ( Scalar ` ndx ) , ( S |`s C ) >. = <. ( Scalar ` ndx ) , ( R |`s C ) >. ) |
54 |
53
|
adantr |
|- ( ( ph /\ -. A C_ B ) -> <. ( Scalar ` ndx ) , ( S |`s C ) >. = <. ( Scalar ` ndx ) , ( R |`s C ) >. ) |
55 |
48 54
|
oveq12d |
|- ( ( ph /\ -. A C_ B ) -> ( S sSet <. ( Scalar ` ndx ) , ( S |`s C ) >. ) = ( ( R sSet <. ( Base ` ndx ) , B >. ) sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) ) |
56 |
|
scandxnbasendx |
|- ( Scalar ` ndx ) =/= ( Base ` ndx ) |
57 |
56
|
a1i |
|- ( ph -> ( Scalar ` ndx ) =/= ( Base ` ndx ) ) |
58 |
|
ovexd |
|- ( ph -> ( R |`s C ) e. _V ) |
59 |
|
fvex |
|- ( Scalar ` ndx ) e. _V |
60 |
|
fvex |
|- ( Base ` ndx ) e. _V |
61 |
59 60
|
setscom |
|- ( ( ( R e. _V /\ ( Scalar ` ndx ) =/= ( Base ` ndx ) ) /\ ( ( R |`s C ) e. _V /\ B e. _V ) ) -> ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( Base ` ndx ) , B >. ) = ( ( R sSet <. ( Base ` ndx ) , B >. ) sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) ) |
62 |
23 57 58 39 61
|
syl22anc |
|- ( ph -> ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( Base ` ndx ) , B >. ) = ( ( R sSet <. ( Base ` ndx ) , B >. ) sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) ) |
63 |
62
|
adantr |
|- ( ( ph /\ -. A C_ B ) -> ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( Base ` ndx ) , B >. ) = ( ( R sSet <. ( Base ` ndx ) , B >. ) sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) ) |
64 |
55 63
|
eqtr4d |
|- ( ( ph /\ -. A C_ B ) -> ( S sSet <. ( Scalar ` ndx ) , ( S |`s C ) >. ) = ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( Base ` ndx ) , B >. ) ) |
65 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
66 |
2 65
|
ressmulr |
|- ( B e. _V -> ( .r ` R ) = ( .r ` S ) ) |
67 |
39 66
|
syl |
|- ( ph -> ( .r ` R ) = ( .r ` S ) ) |
68 |
67
|
eqcomd |
|- ( ph -> ( .r ` S ) = ( .r ` R ) ) |
69 |
68
|
opeq2d |
|- ( ph -> <. ( .s ` ndx ) , ( .r ` S ) >. = <. ( .s ` ndx ) , ( .r ` R ) >. ) |
70 |
69
|
adantr |
|- ( ( ph /\ -. A C_ B ) -> <. ( .s ` ndx ) , ( .r ` S ) >. = <. ( .s ` ndx ) , ( .r ` R ) >. ) |
71 |
64 70
|
oveq12d |
|- ( ( ph /\ -. A C_ B ) -> ( ( S sSet <. ( Scalar ` ndx ) , ( S |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` S ) >. ) = ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( Base ` ndx ) , B >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) ) |
72 |
|
ovexd |
|- ( ph -> ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) e. _V ) |
73 |
|
vscandxnbasendx |
|- ( .s ` ndx ) =/= ( Base ` ndx ) |
74 |
73
|
a1i |
|- ( ph -> ( .s ` ndx ) =/= ( Base ` ndx ) ) |
75 |
|
fvexd |
|- ( ph -> ( .r ` R ) e. _V ) |
76 |
|
fvex |
|- ( .s ` ndx ) e. _V |
77 |
76 60
|
setscom |
|- ( ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) e. _V /\ ( .s ` ndx ) =/= ( Base ` ndx ) ) /\ ( ( .r ` R ) e. _V /\ B e. _V ) ) -> ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) sSet <. ( Base ` ndx ) , B >. ) = ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( Base ` ndx ) , B >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) ) |
78 |
72 74 75 39 77
|
syl22anc |
|- ( ph -> ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) sSet <. ( Base ` ndx ) , B >. ) = ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( Base ` ndx ) , B >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) ) |
79 |
78
|
adantr |
|- ( ( ph /\ -. A C_ B ) -> ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) sSet <. ( Base ` ndx ) , B >. ) = ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( Base ` ndx ) , B >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) ) |
80 |
71 79
|
eqtr4d |
|- ( ( ph /\ -. A C_ B ) -> ( ( S sSet <. ( Scalar ` ndx ) , ( S |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` S ) >. ) = ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) sSet <. ( Base ` ndx ) , B >. ) ) |
81 |
68
|
opeq2d |
|- ( ph -> <. ( .i ` ndx ) , ( .r ` S ) >. = <. ( .i ` ndx ) , ( .r ` R ) >. ) |
82 |
81
|
adantr |
|- ( ( ph /\ -. A C_ B ) -> <. ( .i ` ndx ) , ( .r ` S ) >. = <. ( .i ` ndx ) , ( .r ` R ) >. ) |
83 |
80 82
|
oveq12d |
|- ( ( ph /\ -. A C_ B ) -> ( ( ( S sSet <. ( Scalar ` ndx ) , ( S |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` S ) >. ) sSet <. ( .i ` ndx ) , ( .r ` S ) >. ) = ( ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) sSet <. ( Base ` ndx ) , B >. ) sSet <. ( .i ` ndx ) , ( .r ` R ) >. ) ) |
84 |
|
ovexd |
|- ( ph -> ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) e. _V ) |
85 |
|
ipndxnbasendx |
|- ( .i ` ndx ) =/= ( Base ` ndx ) |
86 |
85
|
a1i |
|- ( ph -> ( .i ` ndx ) =/= ( Base ` ndx ) ) |
87 |
|
fvex |
|- ( .i ` ndx ) e. _V |
88 |
87 60
|
setscom |
|- ( ( ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) e. _V /\ ( .i ` ndx ) =/= ( Base ` ndx ) ) /\ ( ( .r ` R ) e. _V /\ B e. _V ) ) -> ( ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) sSet <. ( .i ` ndx ) , ( .r ` R ) >. ) sSet <. ( Base ` ndx ) , B >. ) = ( ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) sSet <. ( Base ` ndx ) , B >. ) sSet <. ( .i ` ndx ) , ( .r ` R ) >. ) ) |
89 |
84 86 75 39 88
|
syl22anc |
|- ( ph -> ( ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) sSet <. ( .i ` ndx ) , ( .r ` R ) >. ) sSet <. ( Base ` ndx ) , B >. ) = ( ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) sSet <. ( Base ` ndx ) , B >. ) sSet <. ( .i ` ndx ) , ( .r ` R ) >. ) ) |
90 |
89
|
adantr |
|- ( ( ph /\ -. A C_ B ) -> ( ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) sSet <. ( .i ` ndx ) , ( .r ` R ) >. ) sSet <. ( Base ` ndx ) , B >. ) = ( ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) sSet <. ( Base ` ndx ) , B >. ) sSet <. ( .i ` ndx ) , ( .r ` R ) >. ) ) |
91 |
83 90
|
eqtr4d |
|- ( ( ph /\ -. A C_ B ) -> ( ( ( S sSet <. ( Scalar ` ndx ) , ( S |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` S ) >. ) sSet <. ( .i ` ndx ) , ( .r ` S ) >. ) = ( ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) sSet <. ( .i ` ndx ) , ( .r ` R ) >. ) sSet <. ( Base ` ndx ) , B >. ) ) |
92 |
2
|
ovexi |
|- S e. _V |
93 |
2 1
|
ressbas2 |
|- ( B C_ A -> B = ( Base ` S ) ) |
94 |
3 93
|
syl |
|- ( ph -> B = ( Base ` S ) ) |
95 |
4 94
|
sseqtrd |
|- ( ph -> C C_ ( Base ` S ) ) |
96 |
95
|
adantr |
|- ( ( ph /\ -. A C_ B ) -> C C_ ( Base ` S ) ) |
97 |
|
sraval |
|- ( ( S e. _V /\ C C_ ( Base ` S ) ) -> ( ( subringAlg ` S ) ` C ) = ( ( ( S sSet <. ( Scalar ` ndx ) , ( S |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` S ) >. ) sSet <. ( .i ` ndx ) , ( .r ` S ) >. ) ) |
98 |
92 96 97
|
sylancr |
|- ( ( ph /\ -. A C_ B ) -> ( ( subringAlg ` S ) ` C ) = ( ( ( S sSet <. ( Scalar ` ndx ) , ( S |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` S ) >. ) sSet <. ( .i ` ndx ) , ( .r ` S ) >. ) ) |
99 |
10
|
adantr |
|- ( ( ph /\ -. A C_ B ) -> A = ( Base ` ( ( subringAlg ` R ) ` C ) ) ) |
100 |
99
|
sseq1d |
|- ( ( ph /\ -. A C_ B ) -> ( A C_ B <-> ( Base ` ( ( subringAlg ` R ) ` C ) ) C_ B ) ) |
101 |
35 100
|
mtbid |
|- ( ( ph /\ -. A C_ B ) -> -. ( Base ` ( ( subringAlg ` R ) ` C ) ) C_ B ) |
102 |
|
fvexd |
|- ( ( ph /\ -. A C_ B ) -> ( ( subringAlg ` R ) ` C ) e. _V ) |
103 |
|
eqid |
|- ( ( ( subringAlg ` R ) ` C ) |`s B ) = ( ( ( subringAlg ` R ) ` C ) |`s B ) |
104 |
103 18
|
ressval2 |
|- ( ( -. ( Base ` ( ( subringAlg ` R ) ` C ) ) C_ B /\ ( ( subringAlg ` R ) ` C ) e. _V /\ B e. _V ) -> ( ( ( subringAlg ` R ) ` C ) |`s B ) = ( ( ( subringAlg ` R ) ` C ) sSet <. ( Base ` ndx ) , ( B i^i ( Base ` ( ( subringAlg ` R ) ` C ) ) ) >. ) ) |
105 |
101 102 40 104
|
syl3anc |
|- ( ( ph /\ -. A C_ B ) -> ( ( ( subringAlg ` R ) ` C ) |`s B ) = ( ( ( subringAlg ` R ) ` C ) sSet <. ( Base ` ndx ) , ( B i^i ( Base ` ( ( subringAlg ` R ) ` C ) ) ) >. ) ) |
106 |
10
|
ineq2d |
|- ( ph -> ( B i^i A ) = ( B i^i ( Base ` ( ( subringAlg ` R ) ` C ) ) ) ) |
107 |
106 44
|
eqtr3d |
|- ( ph -> ( B i^i ( Base ` ( ( subringAlg ` R ) ` C ) ) ) = B ) |
108 |
107
|
opeq2d |
|- ( ph -> <. ( Base ` ndx ) , ( B i^i ( Base ` ( ( subringAlg ` R ) ` C ) ) ) >. = <. ( Base ` ndx ) , B >. ) |
109 |
108
|
oveq2d |
|- ( ph -> ( ( ( subringAlg ` R ) ` C ) sSet <. ( Base ` ndx ) , ( B i^i ( Base ` ( ( subringAlg ` R ) ` C ) ) ) >. ) = ( ( ( subringAlg ` R ) ` C ) sSet <. ( Base ` ndx ) , B >. ) ) |
110 |
109
|
adantr |
|- ( ( ph /\ -. A C_ B ) -> ( ( ( subringAlg ` R ) ` C ) sSet <. ( Base ` ndx ) , ( B i^i ( Base ` ( ( subringAlg ` R ) ` C ) ) ) >. ) = ( ( ( subringAlg ` R ) ` C ) sSet <. ( Base ` ndx ) , B >. ) ) |
111 |
|
sraval |
|- ( ( R e. V /\ C C_ ( Base ` R ) ) -> ( ( subringAlg ` R ) ` C ) = ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) sSet <. ( .i ` ndx ) , ( .r ` R ) >. ) ) |
112 |
5 8 111
|
syl2anc |
|- ( ph -> ( ( subringAlg ` R ) ` C ) = ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) sSet <. ( .i ` ndx ) , ( .r ` R ) >. ) ) |
113 |
112
|
oveq1d |
|- ( ph -> ( ( ( subringAlg ` R ) ` C ) sSet <. ( Base ` ndx ) , B >. ) = ( ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) sSet <. ( .i ` ndx ) , ( .r ` R ) >. ) sSet <. ( Base ` ndx ) , B >. ) ) |
114 |
113
|
adantr |
|- ( ( ph /\ -. A C_ B ) -> ( ( ( subringAlg ` R ) ` C ) sSet <. ( Base ` ndx ) , B >. ) = ( ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) sSet <. ( .i ` ndx ) , ( .r ` R ) >. ) sSet <. ( Base ` ndx ) , B >. ) ) |
115 |
105 110 114
|
3eqtrd |
|- ( ( ph /\ -. A C_ B ) -> ( ( ( subringAlg ` R ) ` C ) |`s B ) = ( ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) sSet <. ( .i ` ndx ) , ( .r ` R ) >. ) sSet <. ( Base ` ndx ) , B >. ) ) |
116 |
91 98 115
|
3eqtr4d |
|- ( ( ph /\ -. A C_ B ) -> ( ( subringAlg ` S ) ` C ) = ( ( ( subringAlg ` R ) ` C ) |`s B ) ) |
117 |
34 116
|
pm2.61dan |
|- ( ph -> ( ( subringAlg ` S ) ` C ) = ( ( ( subringAlg ` R ) ` C ) |`s B ) ) |