Step |
Hyp |
Ref |
Expression |
1 |
|
df-ima |
|- ( R " A ) = ran ( R |` A ) |
2 |
1
|
sseq1i |
|- ( ( R " A ) C_ B <-> ran ( R |` A ) C_ B ) |
3 |
|
dmres |
|- dom ( R |` A ) = ( A i^i dom R ) |
4 |
|
inss1 |
|- ( A i^i dom R ) C_ A |
5 |
3 4
|
eqsstri |
|- dom ( R |` A ) C_ A |
6 |
5
|
biantrur |
|- ( ran ( R |` A ) C_ B <-> ( dom ( R |` A ) C_ A /\ ran ( R |` A ) C_ B ) ) |
7 |
|
relres |
|- Rel ( R |` A ) |
8 |
|
relssdmrn |
|- ( Rel ( R |` A ) -> ( R |` A ) C_ ( dom ( R |` A ) X. ran ( R |` A ) ) ) |
9 |
7 8
|
ax-mp |
|- ( R |` A ) C_ ( dom ( R |` A ) X. ran ( R |` A ) ) |
10 |
|
xpss12 |
|- ( ( dom ( R |` A ) C_ A /\ ran ( R |` A ) C_ B ) -> ( dom ( R |` A ) X. ran ( R |` A ) ) C_ ( A X. B ) ) |
11 |
9 10
|
sstrid |
|- ( ( dom ( R |` A ) C_ A /\ ran ( R |` A ) C_ B ) -> ( R |` A ) C_ ( A X. B ) ) |
12 |
|
dmss |
|- ( ( R |` A ) C_ ( A X. B ) -> dom ( R |` A ) C_ dom ( A X. B ) ) |
13 |
|
dmxpss |
|- dom ( A X. B ) C_ A |
14 |
12 13
|
sstrdi |
|- ( ( R |` A ) C_ ( A X. B ) -> dom ( R |` A ) C_ A ) |
15 |
|
rnss |
|- ( ( R |` A ) C_ ( A X. B ) -> ran ( R |` A ) C_ ran ( A X. B ) ) |
16 |
|
rnxpss |
|- ran ( A X. B ) C_ B |
17 |
15 16
|
sstrdi |
|- ( ( R |` A ) C_ ( A X. B ) -> ran ( R |` A ) C_ B ) |
18 |
14 17
|
jca |
|- ( ( R |` A ) C_ ( A X. B ) -> ( dom ( R |` A ) C_ A /\ ran ( R |` A ) C_ B ) ) |
19 |
11 18
|
impbii |
|- ( ( dom ( R |` A ) C_ A /\ ran ( R |` A ) C_ B ) <-> ( R |` A ) C_ ( A X. B ) ) |
20 |
2 6 19
|
3bitri |
|- ( ( R " A ) C_ B <-> ( R |` A ) C_ ( A X. B ) ) |