| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resstopn.1 |
|- H = ( K |`s A ) |
| 2 |
|
resstopn.2 |
|- J = ( TopOpen ` K ) |
| 3 |
|
fvex |
|- ( TopSet ` K ) e. _V |
| 4 |
|
fvex |
|- ( Base ` K ) e. _V |
| 5 |
|
restco |
|- ( ( ( TopSet ` K ) e. _V /\ ( Base ` K ) e. _V /\ A e. _V ) -> ( ( ( TopSet ` K ) |`t ( Base ` K ) ) |`t A ) = ( ( TopSet ` K ) |`t ( ( Base ` K ) i^i A ) ) ) |
| 6 |
3 4 5
|
mp3an12 |
|- ( A e. _V -> ( ( ( TopSet ` K ) |`t ( Base ` K ) ) |`t A ) = ( ( TopSet ` K ) |`t ( ( Base ` K ) i^i A ) ) ) |
| 7 |
|
eqid |
|- ( TopSet ` K ) = ( TopSet ` K ) |
| 8 |
1 7
|
resstset |
|- ( A e. _V -> ( TopSet ` K ) = ( TopSet ` H ) ) |
| 9 |
|
incom |
|- ( ( Base ` K ) i^i A ) = ( A i^i ( Base ` K ) ) |
| 10 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 11 |
1 10
|
ressbas |
|- ( A e. _V -> ( A i^i ( Base ` K ) ) = ( Base ` H ) ) |
| 12 |
9 11
|
eqtrid |
|- ( A e. _V -> ( ( Base ` K ) i^i A ) = ( Base ` H ) ) |
| 13 |
8 12
|
oveq12d |
|- ( A e. _V -> ( ( TopSet ` K ) |`t ( ( Base ` K ) i^i A ) ) = ( ( TopSet ` H ) |`t ( Base ` H ) ) ) |
| 14 |
6 13
|
eqtrd |
|- ( A e. _V -> ( ( ( TopSet ` K ) |`t ( Base ` K ) ) |`t A ) = ( ( TopSet ` H ) |`t ( Base ` H ) ) ) |
| 15 |
10 7
|
topnval |
|- ( ( TopSet ` K ) |`t ( Base ` K ) ) = ( TopOpen ` K ) |
| 16 |
15 2
|
eqtr4i |
|- ( ( TopSet ` K ) |`t ( Base ` K ) ) = J |
| 17 |
16
|
oveq1i |
|- ( ( ( TopSet ` K ) |`t ( Base ` K ) ) |`t A ) = ( J |`t A ) |
| 18 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
| 19 |
|
eqid |
|- ( TopSet ` H ) = ( TopSet ` H ) |
| 20 |
18 19
|
topnval |
|- ( ( TopSet ` H ) |`t ( Base ` H ) ) = ( TopOpen ` H ) |
| 21 |
14 17 20
|
3eqtr3g |
|- ( A e. _V -> ( J |`t A ) = ( TopOpen ` H ) ) |
| 22 |
|
simpr |
|- ( ( J e. _V /\ A e. _V ) -> A e. _V ) |
| 23 |
|
restfn |
|- |`t Fn ( _V X. _V ) |
| 24 |
23
|
fndmi |
|- dom |`t = ( _V X. _V ) |
| 25 |
24
|
ndmov |
|- ( -. ( J e. _V /\ A e. _V ) -> ( J |`t A ) = (/) ) |
| 26 |
22 25
|
nsyl5 |
|- ( -. A e. _V -> ( J |`t A ) = (/) ) |
| 27 |
|
reldmress |
|- Rel dom |`s |
| 28 |
27
|
ovprc2 |
|- ( -. A e. _V -> ( K |`s A ) = (/) ) |
| 29 |
1 28
|
eqtrid |
|- ( -. A e. _V -> H = (/) ) |
| 30 |
29
|
fveq2d |
|- ( -. A e. _V -> ( TopSet ` H ) = ( TopSet ` (/) ) ) |
| 31 |
|
tsetid |
|- TopSet = Slot ( TopSet ` ndx ) |
| 32 |
31
|
str0 |
|- (/) = ( TopSet ` (/) ) |
| 33 |
30 32
|
eqtr4di |
|- ( -. A e. _V -> ( TopSet ` H ) = (/) ) |
| 34 |
33
|
oveq1d |
|- ( -. A e. _V -> ( ( TopSet ` H ) |`t ( Base ` H ) ) = ( (/) |`t ( Base ` H ) ) ) |
| 35 |
|
0rest |
|- ( (/) |`t ( Base ` H ) ) = (/) |
| 36 |
34 20 35
|
3eqtr3g |
|- ( -. A e. _V -> ( TopOpen ` H ) = (/) ) |
| 37 |
26 36
|
eqtr4d |
|- ( -. A e. _V -> ( J |`t A ) = ( TopOpen ` H ) ) |
| 38 |
21 37
|
pm2.61i |
|- ( J |`t A ) = ( TopOpen ` H ) |