Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
2 |
|
eqid |
|- ( TopOpen ` K ) = ( TopOpen ` K ) |
3 |
1 2
|
istps |
|- ( K e. TopSp <-> ( TopOpen ` K ) e. ( TopOn ` ( Base ` K ) ) ) |
4 |
|
resttopon2 |
|- ( ( ( TopOpen ` K ) e. ( TopOn ` ( Base ` K ) ) /\ A e. V ) -> ( ( TopOpen ` K ) |`t A ) e. ( TopOn ` ( A i^i ( Base ` K ) ) ) ) |
5 |
3 4
|
sylanb |
|- ( ( K e. TopSp /\ A e. V ) -> ( ( TopOpen ` K ) |`t A ) e. ( TopOn ` ( A i^i ( Base ` K ) ) ) ) |
6 |
|
eqid |
|- ( K |`s A ) = ( K |`s A ) |
7 |
6 1
|
ressbas |
|- ( A e. V -> ( A i^i ( Base ` K ) ) = ( Base ` ( K |`s A ) ) ) |
8 |
7
|
adantl |
|- ( ( K e. TopSp /\ A e. V ) -> ( A i^i ( Base ` K ) ) = ( Base ` ( K |`s A ) ) ) |
9 |
8
|
fveq2d |
|- ( ( K e. TopSp /\ A e. V ) -> ( TopOn ` ( A i^i ( Base ` K ) ) ) = ( TopOn ` ( Base ` ( K |`s A ) ) ) ) |
10 |
5 9
|
eleqtrd |
|- ( ( K e. TopSp /\ A e. V ) -> ( ( TopOpen ` K ) |`t A ) e. ( TopOn ` ( Base ` ( K |`s A ) ) ) ) |
11 |
|
eqid |
|- ( Base ` ( K |`s A ) ) = ( Base ` ( K |`s A ) ) |
12 |
6 2
|
resstopn |
|- ( ( TopOpen ` K ) |`t A ) = ( TopOpen ` ( K |`s A ) ) |
13 |
11 12
|
istps |
|- ( ( K |`s A ) e. TopSp <-> ( ( TopOpen ` K ) |`t A ) e. ( TopOn ` ( Base ` ( K |`s A ) ) ) ) |
14 |
10 13
|
sylibr |
|- ( ( K e. TopSp /\ A e. V ) -> ( K |`s A ) e. TopSp ) |