Metamath Proof Explorer


Theorem ressunif

Description: UnifSet is unaffected by restriction. (Contributed by Thierry Arnoux, 7-Dec-2017)

Ref Expression
Hypotheses ressunif.1
|- H = ( G |`s A )
ressunif.2
|- U = ( UnifSet ` G )
Assertion ressunif
|- ( A e. V -> U = ( UnifSet ` H ) )

Proof

Step Hyp Ref Expression
1 ressunif.1
 |-  H = ( G |`s A )
2 ressunif.2
 |-  U = ( UnifSet ` G )
3 unifid
 |-  UnifSet = Slot ( UnifSet ` ndx )
4 unifndxnbasendx
 |-  ( UnifSet ` ndx ) =/= ( Base ` ndx )
5 1 2 3 4 resseqnbas
 |-  ( A e. V -> U = ( UnifSet ` H ) )