Metamath Proof Explorer


Theorem ressuppfi

Description: If the support of the restriction of a function by a set which, subtracted from the domain of the function so that its difference is finite, the support of the function itself is finite. (Contributed by AV, 22-Apr-2019)

Ref Expression
Hypotheses ressuppfi.b
|- ( ph -> ( dom F \ B ) e. Fin )
ressuppfi.f
|- ( ph -> F e. W )
ressuppfi.g
|- ( ph -> G = ( F |` B ) )
ressuppfi.s
|- ( ph -> ( G supp Z ) e. Fin )
ressuppfi.z
|- ( ph -> Z e. V )
Assertion ressuppfi
|- ( ph -> ( F supp Z ) e. Fin )

Proof

Step Hyp Ref Expression
1 ressuppfi.b
 |-  ( ph -> ( dom F \ B ) e. Fin )
2 ressuppfi.f
 |-  ( ph -> F e. W )
3 ressuppfi.g
 |-  ( ph -> G = ( F |` B ) )
4 ressuppfi.s
 |-  ( ph -> ( G supp Z ) e. Fin )
5 ressuppfi.z
 |-  ( ph -> Z e. V )
6 3 eqcomd
 |-  ( ph -> ( F |` B ) = G )
7 6 oveq1d
 |-  ( ph -> ( ( F |` B ) supp Z ) = ( G supp Z ) )
8 7 4 eqeltrd
 |-  ( ph -> ( ( F |` B ) supp Z ) e. Fin )
9 unfi
 |-  ( ( ( ( F |` B ) supp Z ) e. Fin /\ ( dom F \ B ) e. Fin ) -> ( ( ( F |` B ) supp Z ) u. ( dom F \ B ) ) e. Fin )
10 8 1 9 syl2anc
 |-  ( ph -> ( ( ( F |` B ) supp Z ) u. ( dom F \ B ) ) e. Fin )
11 ressuppssdif
 |-  ( ( F e. W /\ Z e. V ) -> ( F supp Z ) C_ ( ( ( F |` B ) supp Z ) u. ( dom F \ B ) ) )
12 2 5 11 syl2anc
 |-  ( ph -> ( F supp Z ) C_ ( ( ( F |` B ) supp Z ) u. ( dom F \ B ) ) )
13 10 12 ssfid
 |-  ( ph -> ( F supp Z ) e. Fin )