Step |
Hyp |
Ref |
Expression |
1 |
|
ressbas.r |
|- R = ( W |`s A ) |
2 |
|
ressbas.b |
|- B = ( Base ` W ) |
3 |
|
elex |
|- ( W e. X -> W e. _V ) |
4 |
|
elex |
|- ( A e. Y -> A e. _V ) |
5 |
|
simpl |
|- ( ( W e. _V /\ A e. _V ) -> W e. _V ) |
6 |
|
ovex |
|- ( W sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) e. _V |
7 |
|
ifcl |
|- ( ( W e. _V /\ ( W sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) e. _V ) -> if ( B C_ A , W , ( W sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) ) e. _V ) |
8 |
5 6 7
|
sylancl |
|- ( ( W e. _V /\ A e. _V ) -> if ( B C_ A , W , ( W sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) ) e. _V ) |
9 |
|
simpl |
|- ( ( w = W /\ a = A ) -> w = W ) |
10 |
9
|
fveq2d |
|- ( ( w = W /\ a = A ) -> ( Base ` w ) = ( Base ` W ) ) |
11 |
10 2
|
eqtr4di |
|- ( ( w = W /\ a = A ) -> ( Base ` w ) = B ) |
12 |
|
simpr |
|- ( ( w = W /\ a = A ) -> a = A ) |
13 |
11 12
|
sseq12d |
|- ( ( w = W /\ a = A ) -> ( ( Base ` w ) C_ a <-> B C_ A ) ) |
14 |
12 11
|
ineq12d |
|- ( ( w = W /\ a = A ) -> ( a i^i ( Base ` w ) ) = ( A i^i B ) ) |
15 |
14
|
opeq2d |
|- ( ( w = W /\ a = A ) -> <. ( Base ` ndx ) , ( a i^i ( Base ` w ) ) >. = <. ( Base ` ndx ) , ( A i^i B ) >. ) |
16 |
9 15
|
oveq12d |
|- ( ( w = W /\ a = A ) -> ( w sSet <. ( Base ` ndx ) , ( a i^i ( Base ` w ) ) >. ) = ( W sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) ) |
17 |
13 9 16
|
ifbieq12d |
|- ( ( w = W /\ a = A ) -> if ( ( Base ` w ) C_ a , w , ( w sSet <. ( Base ` ndx ) , ( a i^i ( Base ` w ) ) >. ) ) = if ( B C_ A , W , ( W sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) ) ) |
18 |
|
df-ress |
|- |`s = ( w e. _V , a e. _V |-> if ( ( Base ` w ) C_ a , w , ( w sSet <. ( Base ` ndx ) , ( a i^i ( Base ` w ) ) >. ) ) ) |
19 |
17 18
|
ovmpoga |
|- ( ( W e. _V /\ A e. _V /\ if ( B C_ A , W , ( W sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) ) e. _V ) -> ( W |`s A ) = if ( B C_ A , W , ( W sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) ) ) |
20 |
8 19
|
mpd3an3 |
|- ( ( W e. _V /\ A e. _V ) -> ( W |`s A ) = if ( B C_ A , W , ( W sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) ) ) |
21 |
3 4 20
|
syl2an |
|- ( ( W e. X /\ A e. Y ) -> ( W |`s A ) = if ( B C_ A , W , ( W sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) ) ) |
22 |
1 21
|
eqtrid |
|- ( ( W e. X /\ A e. Y ) -> R = if ( B C_ A , W , ( W sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) ) ) |