Description: Value of nontrivial structure restriction. (Contributed by Stefan O'Rear, 29-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ressbas.r | |- R = ( W |`s A ) |
|
ressbas.b | |- B = ( Base ` W ) |
||
Assertion | ressval2 | |- ( ( -. B C_ A /\ W e. X /\ A e. Y ) -> R = ( W sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressbas.r | |- R = ( W |`s A ) |
|
2 | ressbas.b | |- B = ( Base ` W ) |
|
3 | 1 2 | ressval | |- ( ( W e. X /\ A e. Y ) -> R = if ( B C_ A , W , ( W sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) ) ) |
4 | iffalse | |- ( -. B C_ A -> if ( B C_ A , W , ( W sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) ) = ( W sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) ) |
|
5 | 3 4 | sylan9eqr | |- ( ( -. B C_ A /\ ( W e. X /\ A e. Y ) ) -> R = ( W sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) ) |
6 | 5 | 3impb | |- ( ( -. B C_ A /\ W e. X /\ A e. Y ) -> R = ( W sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) ) |