Step |
Hyp |
Ref |
Expression |
1 |
|
ressval3d.r |
|- R = ( S |`s A ) |
2 |
|
ressval3d.b |
|- B = ( Base ` S ) |
3 |
|
ressval3d.e |
|- E = ( Base ` ndx ) |
4 |
|
ressval3d.s |
|- ( ph -> S e. V ) |
5 |
|
ressval3d.f |
|- ( ph -> Fun S ) |
6 |
|
ressval3d.d |
|- ( ph -> E e. dom S ) |
7 |
|
ressval3d.u |
|- ( ph -> A C_ B ) |
8 |
|
sspss |
|- ( A C_ B <-> ( A C. B \/ A = B ) ) |
9 |
|
dfpss3 |
|- ( A C. B <-> ( A C_ B /\ -. B C_ A ) ) |
10 |
9
|
orbi1i |
|- ( ( A C. B \/ A = B ) <-> ( ( A C_ B /\ -. B C_ A ) \/ A = B ) ) |
11 |
8 10
|
bitri |
|- ( A C_ B <-> ( ( A C_ B /\ -. B C_ A ) \/ A = B ) ) |
12 |
|
simplr |
|- ( ( ( A C_ B /\ -. B C_ A ) /\ ph ) -> -. B C_ A ) |
13 |
4
|
adantl |
|- ( ( ( A C_ B /\ -. B C_ A ) /\ ph ) -> S e. V ) |
14 |
|
simpl |
|- ( ( A C_ B /\ -. B C_ A ) -> A C_ B ) |
15 |
2
|
fvexi |
|- B e. _V |
16 |
15
|
a1i |
|- ( ph -> B e. _V ) |
17 |
|
ssexg |
|- ( ( A C_ B /\ B e. _V ) -> A e. _V ) |
18 |
14 16 17
|
syl2an |
|- ( ( ( A C_ B /\ -. B C_ A ) /\ ph ) -> A e. _V ) |
19 |
1 2
|
ressval2 |
|- ( ( -. B C_ A /\ S e. V /\ A e. _V ) -> R = ( S sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) ) |
20 |
12 13 18 19
|
syl3anc |
|- ( ( ( A C_ B /\ -. B C_ A ) /\ ph ) -> R = ( S sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) ) |
21 |
3
|
a1i |
|- ( ( ( A C_ B /\ -. B C_ A ) /\ ph ) -> E = ( Base ` ndx ) ) |
22 |
|
df-ss |
|- ( A C_ B <-> ( A i^i B ) = A ) |
23 |
22
|
biimpi |
|- ( A C_ B -> ( A i^i B ) = A ) |
24 |
23
|
eqcomd |
|- ( A C_ B -> A = ( A i^i B ) ) |
25 |
24
|
adantr |
|- ( ( A C_ B /\ -. B C_ A ) -> A = ( A i^i B ) ) |
26 |
25
|
adantr |
|- ( ( ( A C_ B /\ -. B C_ A ) /\ ph ) -> A = ( A i^i B ) ) |
27 |
21 26
|
opeq12d |
|- ( ( ( A C_ B /\ -. B C_ A ) /\ ph ) -> <. E , A >. = <. ( Base ` ndx ) , ( A i^i B ) >. ) |
28 |
27
|
eqcomd |
|- ( ( ( A C_ B /\ -. B C_ A ) /\ ph ) -> <. ( Base ` ndx ) , ( A i^i B ) >. = <. E , A >. ) |
29 |
28
|
oveq2d |
|- ( ( ( A C_ B /\ -. B C_ A ) /\ ph ) -> ( S sSet <. ( Base ` ndx ) , ( A i^i B ) >. ) = ( S sSet <. E , A >. ) ) |
30 |
20 29
|
eqtrd |
|- ( ( ( A C_ B /\ -. B C_ A ) /\ ph ) -> R = ( S sSet <. E , A >. ) ) |
31 |
30
|
ex |
|- ( ( A C_ B /\ -. B C_ A ) -> ( ph -> R = ( S sSet <. E , A >. ) ) ) |
32 |
1
|
a1i |
|- ( ( A = B /\ ph ) -> R = ( S |`s A ) ) |
33 |
|
oveq2 |
|- ( A = B -> ( S |`s A ) = ( S |`s B ) ) |
34 |
33
|
adantr |
|- ( ( A = B /\ ph ) -> ( S |`s A ) = ( S |`s B ) ) |
35 |
4
|
adantl |
|- ( ( A = B /\ ph ) -> S e. V ) |
36 |
2
|
ressid |
|- ( S e. V -> ( S |`s B ) = S ) |
37 |
35 36
|
syl |
|- ( ( A = B /\ ph ) -> ( S |`s B ) = S ) |
38 |
32 34 37
|
3eqtrd |
|- ( ( A = B /\ ph ) -> R = S ) |
39 |
|
df-base |
|- Base = Slot 1 |
40 |
|
1nn |
|- 1 e. NN |
41 |
3 6
|
eqeltrrid |
|- ( ph -> ( Base ` ndx ) e. dom S ) |
42 |
39 40 4 5 41
|
setsidvald |
|- ( ph -> S = ( S sSet <. ( Base ` ndx ) , ( Base ` S ) >. ) ) |
43 |
42
|
adantl |
|- ( ( A = B /\ ph ) -> S = ( S sSet <. ( Base ` ndx ) , ( Base ` S ) >. ) ) |
44 |
3
|
a1i |
|- ( ( A = B /\ ph ) -> E = ( Base ` ndx ) ) |
45 |
|
simpl |
|- ( ( A = B /\ ph ) -> A = B ) |
46 |
45 2
|
eqtrdi |
|- ( ( A = B /\ ph ) -> A = ( Base ` S ) ) |
47 |
44 46
|
opeq12d |
|- ( ( A = B /\ ph ) -> <. E , A >. = <. ( Base ` ndx ) , ( Base ` S ) >. ) |
48 |
47
|
eqcomd |
|- ( ( A = B /\ ph ) -> <. ( Base ` ndx ) , ( Base ` S ) >. = <. E , A >. ) |
49 |
48
|
oveq2d |
|- ( ( A = B /\ ph ) -> ( S sSet <. ( Base ` ndx ) , ( Base ` S ) >. ) = ( S sSet <. E , A >. ) ) |
50 |
38 43 49
|
3eqtrd |
|- ( ( A = B /\ ph ) -> R = ( S sSet <. E , A >. ) ) |
51 |
50
|
ex |
|- ( A = B -> ( ph -> R = ( S sSet <. E , A >. ) ) ) |
52 |
31 51
|
jaoi |
|- ( ( ( A C_ B /\ -. B C_ A ) \/ A = B ) -> ( ph -> R = ( S sSet <. E , A >. ) ) ) |
53 |
11 52
|
sylbi |
|- ( A C_ B -> ( ph -> R = ( S sSet <. E , A >. ) ) ) |
54 |
7 53
|
mpcom |
|- ( ph -> R = ( S sSet <. E , A >. ) ) |