Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
2 |
|
eqid |
|- ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |
3 |
1 2
|
xmsxmet |
|- ( K e. *MetSp -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( *Met ` ( Base ` K ) ) ) |
4 |
3
|
adantr |
|- ( ( K e. *MetSp /\ A e. V ) -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( *Met ` ( Base ` K ) ) ) |
5 |
|
xmetres |
|- ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( *Met ` ( Base ` K ) ) -> ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |` ( A X. A ) ) e. ( *Met ` ( ( Base ` K ) i^i A ) ) ) |
6 |
4 5
|
syl |
|- ( ( K e. *MetSp /\ A e. V ) -> ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |` ( A X. A ) ) e. ( *Met ` ( ( Base ` K ) i^i A ) ) ) |
7 |
|
resres |
|- ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |` ( A X. A ) ) = ( ( dist ` K ) |` ( ( ( Base ` K ) X. ( Base ` K ) ) i^i ( A X. A ) ) ) |
8 |
|
inxp |
|- ( ( ( Base ` K ) X. ( Base ` K ) ) i^i ( A X. A ) ) = ( ( ( Base ` K ) i^i A ) X. ( ( Base ` K ) i^i A ) ) |
9 |
8
|
reseq2i |
|- ( ( dist ` K ) |` ( ( ( Base ` K ) X. ( Base ` K ) ) i^i ( A X. A ) ) ) = ( ( dist ` K ) |` ( ( ( Base ` K ) i^i A ) X. ( ( Base ` K ) i^i A ) ) ) |
10 |
7 9
|
eqtri |
|- ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |` ( A X. A ) ) = ( ( dist ` K ) |` ( ( ( Base ` K ) i^i A ) X. ( ( Base ` K ) i^i A ) ) ) |
11 |
|
eqid |
|- ( K |`s A ) = ( K |`s A ) |
12 |
|
eqid |
|- ( dist ` K ) = ( dist ` K ) |
13 |
11 12
|
ressds |
|- ( A e. V -> ( dist ` K ) = ( dist ` ( K |`s A ) ) ) |
14 |
13
|
adantl |
|- ( ( K e. *MetSp /\ A e. V ) -> ( dist ` K ) = ( dist ` ( K |`s A ) ) ) |
15 |
|
incom |
|- ( ( Base ` K ) i^i A ) = ( A i^i ( Base ` K ) ) |
16 |
11 1
|
ressbas |
|- ( A e. V -> ( A i^i ( Base ` K ) ) = ( Base ` ( K |`s A ) ) ) |
17 |
16
|
adantl |
|- ( ( K e. *MetSp /\ A e. V ) -> ( A i^i ( Base ` K ) ) = ( Base ` ( K |`s A ) ) ) |
18 |
15 17
|
syl5eq |
|- ( ( K e. *MetSp /\ A e. V ) -> ( ( Base ` K ) i^i A ) = ( Base ` ( K |`s A ) ) ) |
19 |
18
|
sqxpeqd |
|- ( ( K e. *MetSp /\ A e. V ) -> ( ( ( Base ` K ) i^i A ) X. ( ( Base ` K ) i^i A ) ) = ( ( Base ` ( K |`s A ) ) X. ( Base ` ( K |`s A ) ) ) ) |
20 |
14 19
|
reseq12d |
|- ( ( K e. *MetSp /\ A e. V ) -> ( ( dist ` K ) |` ( ( ( Base ` K ) i^i A ) X. ( ( Base ` K ) i^i A ) ) ) = ( ( dist ` ( K |`s A ) ) |` ( ( Base ` ( K |`s A ) ) X. ( Base ` ( K |`s A ) ) ) ) ) |
21 |
10 20
|
syl5eq |
|- ( ( K e. *MetSp /\ A e. V ) -> ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |` ( A X. A ) ) = ( ( dist ` ( K |`s A ) ) |` ( ( Base ` ( K |`s A ) ) X. ( Base ` ( K |`s A ) ) ) ) ) |
22 |
18
|
fveq2d |
|- ( ( K e. *MetSp /\ A e. V ) -> ( *Met ` ( ( Base ` K ) i^i A ) ) = ( *Met ` ( Base ` ( K |`s A ) ) ) ) |
23 |
6 21 22
|
3eltr3d |
|- ( ( K e. *MetSp /\ A e. V ) -> ( ( dist ` ( K |`s A ) ) |` ( ( Base ` ( K |`s A ) ) X. ( Base ` ( K |`s A ) ) ) ) e. ( *Met ` ( Base ` ( K |`s A ) ) ) ) |
24 |
|
eqid |
|- ( TopOpen ` K ) = ( TopOpen ` K ) |
25 |
24 1 2
|
xmstopn |
|- ( K e. *MetSp -> ( TopOpen ` K ) = ( MetOpen ` ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) ) |
26 |
25
|
adantr |
|- ( ( K e. *MetSp /\ A e. V ) -> ( TopOpen ` K ) = ( MetOpen ` ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) ) |
27 |
26
|
oveq1d |
|- ( ( K e. *MetSp /\ A e. V ) -> ( ( TopOpen ` K ) |`t ( ( Base ` K ) i^i A ) ) = ( ( MetOpen ` ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) |`t ( ( Base ` K ) i^i A ) ) ) |
28 |
|
inss1 |
|- ( ( Base ` K ) i^i A ) C_ ( Base ` K ) |
29 |
|
xpss12 |
|- ( ( ( ( Base ` K ) i^i A ) C_ ( Base ` K ) /\ ( ( Base ` K ) i^i A ) C_ ( Base ` K ) ) -> ( ( ( Base ` K ) i^i A ) X. ( ( Base ` K ) i^i A ) ) C_ ( ( Base ` K ) X. ( Base ` K ) ) ) |
30 |
28 28 29
|
mp2an |
|- ( ( ( Base ` K ) i^i A ) X. ( ( Base ` K ) i^i A ) ) C_ ( ( Base ` K ) X. ( Base ` K ) ) |
31 |
|
resabs1 |
|- ( ( ( ( Base ` K ) i^i A ) X. ( ( Base ` K ) i^i A ) ) C_ ( ( Base ` K ) X. ( Base ` K ) ) -> ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |` ( ( ( Base ` K ) i^i A ) X. ( ( Base ` K ) i^i A ) ) ) = ( ( dist ` K ) |` ( ( ( Base ` K ) i^i A ) X. ( ( Base ` K ) i^i A ) ) ) ) |
32 |
30 31
|
ax-mp |
|- ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |` ( ( ( Base ` K ) i^i A ) X. ( ( Base ` K ) i^i A ) ) ) = ( ( dist ` K ) |` ( ( ( Base ` K ) i^i A ) X. ( ( Base ` K ) i^i A ) ) ) |
33 |
10 32
|
eqtr4i |
|- ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |` ( A X. A ) ) = ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |` ( ( ( Base ` K ) i^i A ) X. ( ( Base ` K ) i^i A ) ) ) |
34 |
|
eqid |
|- ( MetOpen ` ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) = ( MetOpen ` ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) |
35 |
|
eqid |
|- ( MetOpen ` ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |` ( A X. A ) ) ) = ( MetOpen ` ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |` ( A X. A ) ) ) |
36 |
33 34 35
|
metrest |
|- ( ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( *Met ` ( Base ` K ) ) /\ ( ( Base ` K ) i^i A ) C_ ( Base ` K ) ) -> ( ( MetOpen ` ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) |`t ( ( Base ` K ) i^i A ) ) = ( MetOpen ` ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |` ( A X. A ) ) ) ) |
37 |
4 28 36
|
sylancl |
|- ( ( K e. *MetSp /\ A e. V ) -> ( ( MetOpen ` ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) |`t ( ( Base ` K ) i^i A ) ) = ( MetOpen ` ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |` ( A X. A ) ) ) ) |
38 |
27 37
|
eqtrd |
|- ( ( K e. *MetSp /\ A e. V ) -> ( ( TopOpen ` K ) |`t ( ( Base ` K ) i^i A ) ) = ( MetOpen ` ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |` ( A X. A ) ) ) ) |
39 |
|
xmstps |
|- ( K e. *MetSp -> K e. TopSp ) |
40 |
1 24
|
tpsuni |
|- ( K e. TopSp -> ( Base ` K ) = U. ( TopOpen ` K ) ) |
41 |
39 40
|
syl |
|- ( K e. *MetSp -> ( Base ` K ) = U. ( TopOpen ` K ) ) |
42 |
41
|
adantr |
|- ( ( K e. *MetSp /\ A e. V ) -> ( Base ` K ) = U. ( TopOpen ` K ) ) |
43 |
42
|
ineq2d |
|- ( ( K e. *MetSp /\ A e. V ) -> ( A i^i ( Base ` K ) ) = ( A i^i U. ( TopOpen ` K ) ) ) |
44 |
15 43
|
syl5eq |
|- ( ( K e. *MetSp /\ A e. V ) -> ( ( Base ` K ) i^i A ) = ( A i^i U. ( TopOpen ` K ) ) ) |
45 |
44
|
oveq2d |
|- ( ( K e. *MetSp /\ A e. V ) -> ( ( TopOpen ` K ) |`t ( ( Base ` K ) i^i A ) ) = ( ( TopOpen ` K ) |`t ( A i^i U. ( TopOpen ` K ) ) ) ) |
46 |
1 24
|
istps |
|- ( K e. TopSp <-> ( TopOpen ` K ) e. ( TopOn ` ( Base ` K ) ) ) |
47 |
39 46
|
sylib |
|- ( K e. *MetSp -> ( TopOpen ` K ) e. ( TopOn ` ( Base ` K ) ) ) |
48 |
|
eqid |
|- U. ( TopOpen ` K ) = U. ( TopOpen ` K ) |
49 |
48
|
restin |
|- ( ( ( TopOpen ` K ) e. ( TopOn ` ( Base ` K ) ) /\ A e. V ) -> ( ( TopOpen ` K ) |`t A ) = ( ( TopOpen ` K ) |`t ( A i^i U. ( TopOpen ` K ) ) ) ) |
50 |
47 49
|
sylan |
|- ( ( K e. *MetSp /\ A e. V ) -> ( ( TopOpen ` K ) |`t A ) = ( ( TopOpen ` K ) |`t ( A i^i U. ( TopOpen ` K ) ) ) ) |
51 |
45 50
|
eqtr4d |
|- ( ( K e. *MetSp /\ A e. V ) -> ( ( TopOpen ` K ) |`t ( ( Base ` K ) i^i A ) ) = ( ( TopOpen ` K ) |`t A ) ) |
52 |
21
|
fveq2d |
|- ( ( K e. *MetSp /\ A e. V ) -> ( MetOpen ` ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |` ( A X. A ) ) ) = ( MetOpen ` ( ( dist ` ( K |`s A ) ) |` ( ( Base ` ( K |`s A ) ) X. ( Base ` ( K |`s A ) ) ) ) ) ) |
53 |
38 51 52
|
3eqtr3d |
|- ( ( K e. *MetSp /\ A e. V ) -> ( ( TopOpen ` K ) |`t A ) = ( MetOpen ` ( ( dist ` ( K |`s A ) ) |` ( ( Base ` ( K |`s A ) ) X. ( Base ` ( K |`s A ) ) ) ) ) ) |
54 |
11 24
|
resstopn |
|- ( ( TopOpen ` K ) |`t A ) = ( TopOpen ` ( K |`s A ) ) |
55 |
|
eqid |
|- ( Base ` ( K |`s A ) ) = ( Base ` ( K |`s A ) ) |
56 |
|
eqid |
|- ( ( dist ` ( K |`s A ) ) |` ( ( Base ` ( K |`s A ) ) X. ( Base ` ( K |`s A ) ) ) ) = ( ( dist ` ( K |`s A ) ) |` ( ( Base ` ( K |`s A ) ) X. ( Base ` ( K |`s A ) ) ) ) |
57 |
54 55 56
|
isxms2 |
|- ( ( K |`s A ) e. *MetSp <-> ( ( ( dist ` ( K |`s A ) ) |` ( ( Base ` ( K |`s A ) ) X. ( Base ` ( K |`s A ) ) ) ) e. ( *Met ` ( Base ` ( K |`s A ) ) ) /\ ( ( TopOpen ` K ) |`t A ) = ( MetOpen ` ( ( dist ` ( K |`s A ) ) |` ( ( Base ` ( K |`s A ) ) X. ( Base ` ( K |`s A ) ) ) ) ) ) ) |
58 |
23 53 57
|
sylanbrc |
|- ( ( K e. *MetSp /\ A e. V ) -> ( K |`s A ) e. *MetSp ) |