Step |
Hyp |
Ref |
Expression |
1 |
|
0ex |
|- (/) e. _V |
2 |
|
restval |
|- ( ( J e. Top /\ (/) e. _V ) -> ( J |`t (/) ) = ran ( x e. J |-> ( x i^i (/) ) ) ) |
3 |
1 2
|
mpan2 |
|- ( J e. Top -> ( J |`t (/) ) = ran ( x e. J |-> ( x i^i (/) ) ) ) |
4 |
|
in0 |
|- ( x i^i (/) ) = (/) |
5 |
1
|
elsn2 |
|- ( ( x i^i (/) ) e. { (/) } <-> ( x i^i (/) ) = (/) ) |
6 |
4 5
|
mpbir |
|- ( x i^i (/) ) e. { (/) } |
7 |
6
|
a1i |
|- ( ( J e. Top /\ x e. J ) -> ( x i^i (/) ) e. { (/) } ) |
8 |
7
|
fmpttd |
|- ( J e. Top -> ( x e. J |-> ( x i^i (/) ) ) : J --> { (/) } ) |
9 |
8
|
frnd |
|- ( J e. Top -> ran ( x e. J |-> ( x i^i (/) ) ) C_ { (/) } ) |
10 |
3 9
|
eqsstrd |
|- ( J e. Top -> ( J |`t (/) ) C_ { (/) } ) |
11 |
|
resttop |
|- ( ( J e. Top /\ (/) e. _V ) -> ( J |`t (/) ) e. Top ) |
12 |
1 11
|
mpan2 |
|- ( J e. Top -> ( J |`t (/) ) e. Top ) |
13 |
|
0opn |
|- ( ( J |`t (/) ) e. Top -> (/) e. ( J |`t (/) ) ) |
14 |
12 13
|
syl |
|- ( J e. Top -> (/) e. ( J |`t (/) ) ) |
15 |
14
|
snssd |
|- ( J e. Top -> { (/) } C_ ( J |`t (/) ) ) |
16 |
10 15
|
eqssd |
|- ( J e. Top -> ( J |`t (/) ) = { (/) } ) |