Metamath Proof Explorer


Theorem restabs

Description: Equivalence of being a subspace of a subspace and being a subspace of the original. (Contributed by Jeff Hankins, 11-Jul-2009) (Proof shortened by Mario Carneiro, 1-May-2015)

Ref Expression
Assertion restabs
|- ( ( J e. V /\ S C_ T /\ T e. W ) -> ( ( J |`t T ) |`t S ) = ( J |`t S ) )

Proof

Step Hyp Ref Expression
1 simp1
 |-  ( ( J e. V /\ S C_ T /\ T e. W ) -> J e. V )
2 simp3
 |-  ( ( J e. V /\ S C_ T /\ T e. W ) -> T e. W )
3 ssexg
 |-  ( ( S C_ T /\ T e. W ) -> S e. _V )
4 3 3adant1
 |-  ( ( J e. V /\ S C_ T /\ T e. W ) -> S e. _V )
5 restco
 |-  ( ( J e. V /\ T e. W /\ S e. _V ) -> ( ( J |`t T ) |`t S ) = ( J |`t ( T i^i S ) ) )
6 1 2 4 5 syl3anc
 |-  ( ( J e. V /\ S C_ T /\ T e. W ) -> ( ( J |`t T ) |`t S ) = ( J |`t ( T i^i S ) ) )
7 simp2
 |-  ( ( J e. V /\ S C_ T /\ T e. W ) -> S C_ T )
8 sseqin2
 |-  ( S C_ T <-> ( T i^i S ) = S )
9 7 8 sylib
 |-  ( ( J e. V /\ S C_ T /\ T e. W ) -> ( T i^i S ) = S )
10 9 oveq2d
 |-  ( ( J e. V /\ S C_ T /\ T e. W ) -> ( J |`t ( T i^i S ) ) = ( J |`t S ) )
11 6 10 eqtrd
 |-  ( ( J e. V /\ S C_ T /\ T e. W ) -> ( ( J |`t T ) |`t S ) = ( J |`t S ) )