| Step |
Hyp |
Ref |
Expression |
| 1 |
|
restcld.1 |
|- X = U. J |
| 2 |
|
id |
|- ( S C_ X -> S C_ X ) |
| 3 |
1
|
topopn |
|- ( J e. Top -> X e. J ) |
| 4 |
|
ssexg |
|- ( ( S C_ X /\ X e. J ) -> S e. _V ) |
| 5 |
2 3 4
|
syl2anr |
|- ( ( J e. Top /\ S C_ X ) -> S e. _V ) |
| 6 |
|
resttop |
|- ( ( J e. Top /\ S e. _V ) -> ( J |`t S ) e. Top ) |
| 7 |
5 6
|
syldan |
|- ( ( J e. Top /\ S C_ X ) -> ( J |`t S ) e. Top ) |
| 8 |
|
eqid |
|- U. ( J |`t S ) = U. ( J |`t S ) |
| 9 |
8
|
iscld |
|- ( ( J |`t S ) e. Top -> ( A e. ( Clsd ` ( J |`t S ) ) <-> ( A C_ U. ( J |`t S ) /\ ( U. ( J |`t S ) \ A ) e. ( J |`t S ) ) ) ) |
| 10 |
7 9
|
syl |
|- ( ( J e. Top /\ S C_ X ) -> ( A e. ( Clsd ` ( J |`t S ) ) <-> ( A C_ U. ( J |`t S ) /\ ( U. ( J |`t S ) \ A ) e. ( J |`t S ) ) ) ) |
| 11 |
1
|
restuni |
|- ( ( J e. Top /\ S C_ X ) -> S = U. ( J |`t S ) ) |
| 12 |
11
|
sseq2d |
|- ( ( J e. Top /\ S C_ X ) -> ( A C_ S <-> A C_ U. ( J |`t S ) ) ) |
| 13 |
11
|
difeq1d |
|- ( ( J e. Top /\ S C_ X ) -> ( S \ A ) = ( U. ( J |`t S ) \ A ) ) |
| 14 |
13
|
eleq1d |
|- ( ( J e. Top /\ S C_ X ) -> ( ( S \ A ) e. ( J |`t S ) <-> ( U. ( J |`t S ) \ A ) e. ( J |`t S ) ) ) |
| 15 |
12 14
|
anbi12d |
|- ( ( J e. Top /\ S C_ X ) -> ( ( A C_ S /\ ( S \ A ) e. ( J |`t S ) ) <-> ( A C_ U. ( J |`t S ) /\ ( U. ( J |`t S ) \ A ) e. ( J |`t S ) ) ) ) |
| 16 |
|
elrest |
|- ( ( J e. Top /\ S e. _V ) -> ( ( S \ A ) e. ( J |`t S ) <-> E. o e. J ( S \ A ) = ( o i^i S ) ) ) |
| 17 |
5 16
|
syldan |
|- ( ( J e. Top /\ S C_ X ) -> ( ( S \ A ) e. ( J |`t S ) <-> E. o e. J ( S \ A ) = ( o i^i S ) ) ) |
| 18 |
17
|
anbi2d |
|- ( ( J e. Top /\ S C_ X ) -> ( ( A C_ S /\ ( S \ A ) e. ( J |`t S ) ) <-> ( A C_ S /\ E. o e. J ( S \ A ) = ( o i^i S ) ) ) ) |
| 19 |
1
|
opncld |
|- ( ( J e. Top /\ o e. J ) -> ( X \ o ) e. ( Clsd ` J ) ) |
| 20 |
19
|
ad5ant14 |
|- ( ( ( ( ( J e. Top /\ S C_ X ) /\ A C_ S ) /\ o e. J ) /\ ( S \ A ) = ( o i^i S ) ) -> ( X \ o ) e. ( Clsd ` J ) ) |
| 21 |
|
incom |
|- ( X i^i S ) = ( S i^i X ) |
| 22 |
|
dfss2 |
|- ( S C_ X <-> ( S i^i X ) = S ) |
| 23 |
22
|
biimpi |
|- ( S C_ X -> ( S i^i X ) = S ) |
| 24 |
21 23
|
eqtrid |
|- ( S C_ X -> ( X i^i S ) = S ) |
| 25 |
24
|
ad4antlr |
|- ( ( ( ( ( J e. Top /\ S C_ X ) /\ A C_ S ) /\ o e. J ) /\ ( S \ A ) = ( o i^i S ) ) -> ( X i^i S ) = S ) |
| 26 |
25
|
difeq1d |
|- ( ( ( ( ( J e. Top /\ S C_ X ) /\ A C_ S ) /\ o e. J ) /\ ( S \ A ) = ( o i^i S ) ) -> ( ( X i^i S ) \ o ) = ( S \ o ) ) |
| 27 |
|
difeq2 |
|- ( ( S \ A ) = ( o i^i S ) -> ( S \ ( S \ A ) ) = ( S \ ( o i^i S ) ) ) |
| 28 |
|
difindi |
|- ( S \ ( o i^i S ) ) = ( ( S \ o ) u. ( S \ S ) ) |
| 29 |
|
difid |
|- ( S \ S ) = (/) |
| 30 |
29
|
uneq2i |
|- ( ( S \ o ) u. ( S \ S ) ) = ( ( S \ o ) u. (/) ) |
| 31 |
|
un0 |
|- ( ( S \ o ) u. (/) ) = ( S \ o ) |
| 32 |
28 30 31
|
3eqtri |
|- ( S \ ( o i^i S ) ) = ( S \ o ) |
| 33 |
27 32
|
eqtrdi |
|- ( ( S \ A ) = ( o i^i S ) -> ( S \ ( S \ A ) ) = ( S \ o ) ) |
| 34 |
33
|
adantl |
|- ( ( ( ( ( J e. Top /\ S C_ X ) /\ A C_ S ) /\ o e. J ) /\ ( S \ A ) = ( o i^i S ) ) -> ( S \ ( S \ A ) ) = ( S \ o ) ) |
| 35 |
|
dfss4 |
|- ( A C_ S <-> ( S \ ( S \ A ) ) = A ) |
| 36 |
35
|
biimpi |
|- ( A C_ S -> ( S \ ( S \ A ) ) = A ) |
| 37 |
36
|
ad3antlr |
|- ( ( ( ( ( J e. Top /\ S C_ X ) /\ A C_ S ) /\ o e. J ) /\ ( S \ A ) = ( o i^i S ) ) -> ( S \ ( S \ A ) ) = A ) |
| 38 |
26 34 37
|
3eqtr2rd |
|- ( ( ( ( ( J e. Top /\ S C_ X ) /\ A C_ S ) /\ o e. J ) /\ ( S \ A ) = ( o i^i S ) ) -> A = ( ( X i^i S ) \ o ) ) |
| 39 |
21
|
difeq1i |
|- ( ( X i^i S ) \ o ) = ( ( S i^i X ) \ o ) |
| 40 |
|
indif2 |
|- ( S i^i ( X \ o ) ) = ( ( S i^i X ) \ o ) |
| 41 |
|
incom |
|- ( S i^i ( X \ o ) ) = ( ( X \ o ) i^i S ) |
| 42 |
39 40 41
|
3eqtr2i |
|- ( ( X i^i S ) \ o ) = ( ( X \ o ) i^i S ) |
| 43 |
38 42
|
eqtrdi |
|- ( ( ( ( ( J e. Top /\ S C_ X ) /\ A C_ S ) /\ o e. J ) /\ ( S \ A ) = ( o i^i S ) ) -> A = ( ( X \ o ) i^i S ) ) |
| 44 |
|
ineq1 |
|- ( x = ( X \ o ) -> ( x i^i S ) = ( ( X \ o ) i^i S ) ) |
| 45 |
44
|
rspceeqv |
|- ( ( ( X \ o ) e. ( Clsd ` J ) /\ A = ( ( X \ o ) i^i S ) ) -> E. x e. ( Clsd ` J ) A = ( x i^i S ) ) |
| 46 |
20 43 45
|
syl2anc |
|- ( ( ( ( ( J e. Top /\ S C_ X ) /\ A C_ S ) /\ o e. J ) /\ ( S \ A ) = ( o i^i S ) ) -> E. x e. ( Clsd ` J ) A = ( x i^i S ) ) |
| 47 |
46
|
rexlimdva2 |
|- ( ( ( J e. Top /\ S C_ X ) /\ A C_ S ) -> ( E. o e. J ( S \ A ) = ( o i^i S ) -> E. x e. ( Clsd ` J ) A = ( x i^i S ) ) ) |
| 48 |
47
|
expimpd |
|- ( ( J e. Top /\ S C_ X ) -> ( ( A C_ S /\ E. o e. J ( S \ A ) = ( o i^i S ) ) -> E. x e. ( Clsd ` J ) A = ( x i^i S ) ) ) |
| 49 |
18 48
|
sylbid |
|- ( ( J e. Top /\ S C_ X ) -> ( ( A C_ S /\ ( S \ A ) e. ( J |`t S ) ) -> E. x e. ( Clsd ` J ) A = ( x i^i S ) ) ) |
| 50 |
|
difindi |
|- ( S \ ( x i^i S ) ) = ( ( S \ x ) u. ( S \ S ) ) |
| 51 |
29
|
uneq2i |
|- ( ( S \ x ) u. ( S \ S ) ) = ( ( S \ x ) u. (/) ) |
| 52 |
|
un0 |
|- ( ( S \ x ) u. (/) ) = ( S \ x ) |
| 53 |
50 51 52
|
3eqtri |
|- ( S \ ( x i^i S ) ) = ( S \ x ) |
| 54 |
|
difin2 |
|- ( S C_ X -> ( S \ x ) = ( ( X \ x ) i^i S ) ) |
| 55 |
54
|
adantl |
|- ( ( J e. Top /\ S C_ X ) -> ( S \ x ) = ( ( X \ x ) i^i S ) ) |
| 56 |
53 55
|
eqtrid |
|- ( ( J e. Top /\ S C_ X ) -> ( S \ ( x i^i S ) ) = ( ( X \ x ) i^i S ) ) |
| 57 |
56
|
adantr |
|- ( ( ( J e. Top /\ S C_ X ) /\ x e. ( Clsd ` J ) ) -> ( S \ ( x i^i S ) ) = ( ( X \ x ) i^i S ) ) |
| 58 |
|
simpll |
|- ( ( ( J e. Top /\ S C_ X ) /\ x e. ( Clsd ` J ) ) -> J e. Top ) |
| 59 |
5
|
adantr |
|- ( ( ( J e. Top /\ S C_ X ) /\ x e. ( Clsd ` J ) ) -> S e. _V ) |
| 60 |
1
|
cldopn |
|- ( x e. ( Clsd ` J ) -> ( X \ x ) e. J ) |
| 61 |
60
|
adantl |
|- ( ( ( J e. Top /\ S C_ X ) /\ x e. ( Clsd ` J ) ) -> ( X \ x ) e. J ) |
| 62 |
|
elrestr |
|- ( ( J e. Top /\ S e. _V /\ ( X \ x ) e. J ) -> ( ( X \ x ) i^i S ) e. ( J |`t S ) ) |
| 63 |
58 59 61 62
|
syl3anc |
|- ( ( ( J e. Top /\ S C_ X ) /\ x e. ( Clsd ` J ) ) -> ( ( X \ x ) i^i S ) e. ( J |`t S ) ) |
| 64 |
57 63
|
eqeltrd |
|- ( ( ( J e. Top /\ S C_ X ) /\ x e. ( Clsd ` J ) ) -> ( S \ ( x i^i S ) ) e. ( J |`t S ) ) |
| 65 |
|
inss2 |
|- ( x i^i S ) C_ S |
| 66 |
64 65
|
jctil |
|- ( ( ( J e. Top /\ S C_ X ) /\ x e. ( Clsd ` J ) ) -> ( ( x i^i S ) C_ S /\ ( S \ ( x i^i S ) ) e. ( J |`t S ) ) ) |
| 67 |
|
sseq1 |
|- ( A = ( x i^i S ) -> ( A C_ S <-> ( x i^i S ) C_ S ) ) |
| 68 |
|
difeq2 |
|- ( A = ( x i^i S ) -> ( S \ A ) = ( S \ ( x i^i S ) ) ) |
| 69 |
68
|
eleq1d |
|- ( A = ( x i^i S ) -> ( ( S \ A ) e. ( J |`t S ) <-> ( S \ ( x i^i S ) ) e. ( J |`t S ) ) ) |
| 70 |
67 69
|
anbi12d |
|- ( A = ( x i^i S ) -> ( ( A C_ S /\ ( S \ A ) e. ( J |`t S ) ) <-> ( ( x i^i S ) C_ S /\ ( S \ ( x i^i S ) ) e. ( J |`t S ) ) ) ) |
| 71 |
66 70
|
syl5ibrcom |
|- ( ( ( J e. Top /\ S C_ X ) /\ x e. ( Clsd ` J ) ) -> ( A = ( x i^i S ) -> ( A C_ S /\ ( S \ A ) e. ( J |`t S ) ) ) ) |
| 72 |
71
|
rexlimdva |
|- ( ( J e. Top /\ S C_ X ) -> ( E. x e. ( Clsd ` J ) A = ( x i^i S ) -> ( A C_ S /\ ( S \ A ) e. ( J |`t S ) ) ) ) |
| 73 |
49 72
|
impbid |
|- ( ( J e. Top /\ S C_ X ) -> ( ( A C_ S /\ ( S \ A ) e. ( J |`t S ) ) <-> E. x e. ( Clsd ` J ) A = ( x i^i S ) ) ) |
| 74 |
10 15 73
|
3bitr2d |
|- ( ( J e. Top /\ S C_ X ) -> ( A e. ( Clsd ` ( J |`t S ) ) <-> E. x e. ( Clsd ` J ) A = ( x i^i S ) ) ) |