Step |
Hyp |
Ref |
Expression |
1 |
|
restcldi.1 |
|- X = U. J |
2 |
|
simp2 |
|- ( ( A C_ X /\ B e. ( Clsd ` J ) /\ B C_ A ) -> B e. ( Clsd ` J ) ) |
3 |
|
dfss |
|- ( B C_ A <-> B = ( B i^i A ) ) |
4 |
3
|
biimpi |
|- ( B C_ A -> B = ( B i^i A ) ) |
5 |
4
|
3ad2ant3 |
|- ( ( A C_ X /\ B e. ( Clsd ` J ) /\ B C_ A ) -> B = ( B i^i A ) ) |
6 |
|
ineq1 |
|- ( v = B -> ( v i^i A ) = ( B i^i A ) ) |
7 |
6
|
rspceeqv |
|- ( ( B e. ( Clsd ` J ) /\ B = ( B i^i A ) ) -> E. v e. ( Clsd ` J ) B = ( v i^i A ) ) |
8 |
2 5 7
|
syl2anc |
|- ( ( A C_ X /\ B e. ( Clsd ` J ) /\ B C_ A ) -> E. v e. ( Clsd ` J ) B = ( v i^i A ) ) |
9 |
|
cldrcl |
|- ( B e. ( Clsd ` J ) -> J e. Top ) |
10 |
9
|
3ad2ant2 |
|- ( ( A C_ X /\ B e. ( Clsd ` J ) /\ B C_ A ) -> J e. Top ) |
11 |
|
simp1 |
|- ( ( A C_ X /\ B e. ( Clsd ` J ) /\ B C_ A ) -> A C_ X ) |
12 |
1
|
restcld |
|- ( ( J e. Top /\ A C_ X ) -> ( B e. ( Clsd ` ( J |`t A ) ) <-> E. v e. ( Clsd ` J ) B = ( v i^i A ) ) ) |
13 |
10 11 12
|
syl2anc |
|- ( ( A C_ X /\ B e. ( Clsd ` J ) /\ B C_ A ) -> ( B e. ( Clsd ` ( J |`t A ) ) <-> E. v e. ( Clsd ` J ) B = ( v i^i A ) ) ) |
14 |
8 13
|
mpbird |
|- ( ( A C_ X /\ B e. ( Clsd ` J ) /\ B C_ A ) -> B e. ( Clsd ` ( J |`t A ) ) ) |