Step |
Hyp |
Ref |
Expression |
1 |
|
distop |
|- ( A e. V -> ~P A e. Top ) |
2 |
|
elpw2g |
|- ( A e. V -> ( B e. ~P A <-> B C_ A ) ) |
3 |
2
|
biimpar |
|- ( ( A e. V /\ B C_ A ) -> B e. ~P A ) |
4 |
|
restopn2 |
|- ( ( ~P A e. Top /\ B e. ~P A ) -> ( x e. ( ~P A |`t B ) <-> ( x e. ~P A /\ x C_ B ) ) ) |
5 |
1 3 4
|
syl2an2r |
|- ( ( A e. V /\ B C_ A ) -> ( x e. ( ~P A |`t B ) <-> ( x e. ~P A /\ x C_ B ) ) ) |
6 |
|
velpw |
|- ( x e. ~P B <-> x C_ B ) |
7 |
|
sstr |
|- ( ( x C_ B /\ B C_ A ) -> x C_ A ) |
8 |
7
|
expcom |
|- ( B C_ A -> ( x C_ B -> x C_ A ) ) |
9 |
8
|
adantl |
|- ( ( A e. V /\ B C_ A ) -> ( x C_ B -> x C_ A ) ) |
10 |
|
velpw |
|- ( x e. ~P A <-> x C_ A ) |
11 |
9 10
|
syl6ibr |
|- ( ( A e. V /\ B C_ A ) -> ( x C_ B -> x e. ~P A ) ) |
12 |
11
|
pm4.71rd |
|- ( ( A e. V /\ B C_ A ) -> ( x C_ B <-> ( x e. ~P A /\ x C_ B ) ) ) |
13 |
6 12
|
syl5bb |
|- ( ( A e. V /\ B C_ A ) -> ( x e. ~P B <-> ( x e. ~P A /\ x C_ B ) ) ) |
14 |
5 13
|
bitr4d |
|- ( ( A e. V /\ B C_ A ) -> ( x e. ( ~P A |`t B ) <-> x e. ~P B ) ) |
15 |
14
|
eqrdv |
|- ( ( A e. V /\ B C_ A ) -> ( ~P A |`t B ) = ~P B ) |