| Step | Hyp | Ref | Expression | 
						
							| 1 |  | distop |  |-  ( A e. V -> ~P A e. Top ) | 
						
							| 2 |  | elpw2g |  |-  ( A e. V -> ( B e. ~P A <-> B C_ A ) ) | 
						
							| 3 | 2 | biimpar |  |-  ( ( A e. V /\ B C_ A ) -> B e. ~P A ) | 
						
							| 4 |  | restopn2 |  |-  ( ( ~P A e. Top /\ B e. ~P A ) -> ( x e. ( ~P A |`t B ) <-> ( x e. ~P A /\ x C_ B ) ) ) | 
						
							| 5 | 1 3 4 | syl2an2r |  |-  ( ( A e. V /\ B C_ A ) -> ( x e. ( ~P A |`t B ) <-> ( x e. ~P A /\ x C_ B ) ) ) | 
						
							| 6 |  | velpw |  |-  ( x e. ~P B <-> x C_ B ) | 
						
							| 7 |  | sstr |  |-  ( ( x C_ B /\ B C_ A ) -> x C_ A ) | 
						
							| 8 | 7 | expcom |  |-  ( B C_ A -> ( x C_ B -> x C_ A ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( A e. V /\ B C_ A ) -> ( x C_ B -> x C_ A ) ) | 
						
							| 10 |  | velpw |  |-  ( x e. ~P A <-> x C_ A ) | 
						
							| 11 | 9 10 | imbitrrdi |  |-  ( ( A e. V /\ B C_ A ) -> ( x C_ B -> x e. ~P A ) ) | 
						
							| 12 | 11 | pm4.71rd |  |-  ( ( A e. V /\ B C_ A ) -> ( x C_ B <-> ( x e. ~P A /\ x C_ B ) ) ) | 
						
							| 13 | 6 12 | bitrid |  |-  ( ( A e. V /\ B C_ A ) -> ( x e. ~P B <-> ( x e. ~P A /\ x C_ B ) ) ) | 
						
							| 14 | 5 13 | bitr4d |  |-  ( ( A e. V /\ B C_ A ) -> ( x e. ( ~P A |`t B ) <-> x e. ~P B ) ) | 
						
							| 15 | 14 | eqrdv |  |-  ( ( A e. V /\ B C_ A ) -> ( ~P A |`t B ) = ~P B ) |