Metamath Proof Explorer


Theorem resthaus

Description: A subspace of a Hausdorff topology is Hausdorff. (Contributed by Mario Carneiro, 2-Mar-2015) (Proof shortened by Mario Carneiro, 25-Aug-2015)

Ref Expression
Assertion resthaus
|- ( ( J e. Haus /\ A e. V ) -> ( J |`t A ) e. Haus )

Proof

Step Hyp Ref Expression
1 haustop
 |-  ( J e. Haus -> J e. Top )
2 cnhaus
 |-  ( ( J e. Haus /\ ( _I |` ( A i^i U. J ) ) : ( A i^i U. J ) -1-1-> ( A i^i U. J ) /\ ( _I |` ( A i^i U. J ) ) e. ( ( J |`t A ) Cn J ) ) -> ( J |`t A ) e. Haus )
3 1 2 resthauslem
 |-  ( ( J e. Haus /\ A e. V ) -> ( J |`t A ) e. Haus )