Step |
Hyp |
Ref |
Expression |
1 |
|
pwexg |
|- ( A e. V -> ~P A e. _V ) |
2 |
1
|
adantr |
|- ( ( A e. V /\ J C_ ~P A ) -> ~P A e. _V ) |
3 |
|
simpr |
|- ( ( A e. V /\ J C_ ~P A ) -> J C_ ~P A ) |
4 |
2 3
|
ssexd |
|- ( ( A e. V /\ J C_ ~P A ) -> J e. _V ) |
5 |
|
simpl |
|- ( ( A e. V /\ J C_ ~P A ) -> A e. V ) |
6 |
|
restval |
|- ( ( J e. _V /\ A e. V ) -> ( J |`t A ) = ran ( x e. J |-> ( x i^i A ) ) ) |
7 |
4 5 6
|
syl2anc |
|- ( ( A e. V /\ J C_ ~P A ) -> ( J |`t A ) = ran ( x e. J |-> ( x i^i A ) ) ) |
8 |
3
|
sselda |
|- ( ( ( A e. V /\ J C_ ~P A ) /\ x e. J ) -> x e. ~P A ) |
9 |
8
|
elpwid |
|- ( ( ( A e. V /\ J C_ ~P A ) /\ x e. J ) -> x C_ A ) |
10 |
|
df-ss |
|- ( x C_ A <-> ( x i^i A ) = x ) |
11 |
9 10
|
sylib |
|- ( ( ( A e. V /\ J C_ ~P A ) /\ x e. J ) -> ( x i^i A ) = x ) |
12 |
11
|
mpteq2dva |
|- ( ( A e. V /\ J C_ ~P A ) -> ( x e. J |-> ( x i^i A ) ) = ( x e. J |-> x ) ) |
13 |
|
mptresid |
|- ( _I |` J ) = ( x e. J |-> x ) |
14 |
12 13
|
eqtr4di |
|- ( ( A e. V /\ J C_ ~P A ) -> ( x e. J |-> ( x i^i A ) ) = ( _I |` J ) ) |
15 |
14
|
rneqd |
|- ( ( A e. V /\ J C_ ~P A ) -> ran ( x e. J |-> ( x i^i A ) ) = ran ( _I |` J ) ) |
16 |
|
rnresi |
|- ran ( _I |` J ) = J |
17 |
15 16
|
eqtrdi |
|- ( ( A e. V /\ J C_ ~P A ) -> ran ( x e. J |-> ( x i^i A ) ) = J ) |
18 |
7 17
|
eqtrd |
|- ( ( A e. V /\ J C_ ~P A ) -> ( J |`t A ) = J ) |