Step |
Hyp |
Ref |
Expression |
1 |
|
relres |
|- Rel ( _I |` { A } ) |
2 |
|
relxp |
|- Rel ( { A } X. { A } ) |
3 |
|
velsn |
|- ( x e. { A } <-> x = A ) |
4 |
|
velsn |
|- ( y e. { A } <-> y = A ) |
5 |
3 4
|
anbi12i |
|- ( ( x e. { A } /\ y e. { A } ) <-> ( x = A /\ y = A ) ) |
6 |
|
vex |
|- y e. _V |
7 |
6
|
ideq |
|- ( x _I y <-> x = y ) |
8 |
3 7
|
anbi12i |
|- ( ( x e. { A } /\ x _I y ) <-> ( x = A /\ x = y ) ) |
9 |
|
eqeq1 |
|- ( x = A -> ( x = y <-> A = y ) ) |
10 |
|
eqcom |
|- ( A = y <-> y = A ) |
11 |
9 10
|
bitrdi |
|- ( x = A -> ( x = y <-> y = A ) ) |
12 |
11
|
pm5.32i |
|- ( ( x = A /\ x = y ) <-> ( x = A /\ y = A ) ) |
13 |
8 12
|
bitri |
|- ( ( x e. { A } /\ x _I y ) <-> ( x = A /\ y = A ) ) |
14 |
|
df-br |
|- ( x _I y <-> <. x , y >. e. _I ) |
15 |
14
|
anbi2i |
|- ( ( x e. { A } /\ x _I y ) <-> ( x e. { A } /\ <. x , y >. e. _I ) ) |
16 |
5 13 15
|
3bitr2ri |
|- ( ( x e. { A } /\ <. x , y >. e. _I ) <-> ( x e. { A } /\ y e. { A } ) ) |
17 |
6
|
opelresi |
|- ( <. x , y >. e. ( _I |` { A } ) <-> ( x e. { A } /\ <. x , y >. e. _I ) ) |
18 |
|
opelxp |
|- ( <. x , y >. e. ( { A } X. { A } ) <-> ( x e. { A } /\ y e. { A } ) ) |
19 |
16 17 18
|
3bitr4i |
|- ( <. x , y >. e. ( _I |` { A } ) <-> <. x , y >. e. ( { A } X. { A } ) ) |
20 |
1 2 19
|
eqrelriiv |
|- ( _I |` { A } ) = ( { A } X. { A } ) |