Metamath Proof Explorer


Theorem restin

Description: When the subspace region is not a subset of the base of the topology, the resulting set is the same as the subspace restricted to the base. (Contributed by Mario Carneiro, 15-Dec-2013)

Ref Expression
Hypothesis restin.1
|- X = U. J
Assertion restin
|- ( ( J e. V /\ A e. W ) -> ( J |`t A ) = ( J |`t ( A i^i X ) ) )

Proof

Step Hyp Ref Expression
1 restin.1
 |-  X = U. J
2 uniexg
 |-  ( J e. V -> U. J e. _V )
3 1 2 eqeltrid
 |-  ( J e. V -> X e. _V )
4 3 adantr
 |-  ( ( J e. V /\ A e. W ) -> X e. _V )
5 restco
 |-  ( ( J e. V /\ X e. _V /\ A e. W ) -> ( ( J |`t X ) |`t A ) = ( J |`t ( X i^i A ) ) )
6 5 3com23
 |-  ( ( J e. V /\ A e. W /\ X e. _V ) -> ( ( J |`t X ) |`t A ) = ( J |`t ( X i^i A ) ) )
7 4 6 mpd3an3
 |-  ( ( J e. V /\ A e. W ) -> ( ( J |`t X ) |`t A ) = ( J |`t ( X i^i A ) ) )
8 1 restid
 |-  ( J e. V -> ( J |`t X ) = J )
9 8 adantr
 |-  ( ( J e. V /\ A e. W ) -> ( J |`t X ) = J )
10 9 oveq1d
 |-  ( ( J e. V /\ A e. W ) -> ( ( J |`t X ) |`t A ) = ( J |`t A ) )
11 incom
 |-  ( X i^i A ) = ( A i^i X )
12 11 oveq2i
 |-  ( J |`t ( X i^i A ) ) = ( J |`t ( A i^i X ) )
13 12 a1i
 |-  ( ( J e. V /\ A e. W ) -> ( J |`t ( X i^i A ) ) = ( J |`t ( A i^i X ) ) )
14 7 10 13 3eqtr3d
 |-  ( ( J e. V /\ A e. W ) -> ( J |`t A ) = ( J |`t ( A i^i X ) ) )