Description: If A is open, then A is open in the restriction to itself. (Contributed by Glauco Siliprandi, 21-Dec-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | restopn3 | |- ( ( J e. Top /\ A e. J ) -> A e. ( J |`t A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr | |- ( ( J e. Top /\ A e. J ) -> A e. J ) |
|
2 | ssidd | |- ( ( J e. Top /\ A e. J ) -> A C_ A ) |
|
3 | restopn2 | |- ( ( J e. Top /\ A e. J ) -> ( A e. ( J |`t A ) <-> ( A e. J /\ A C_ A ) ) ) |
|
4 | 1 2 3 | mpbir2and | |- ( ( J e. Top /\ A e. J ) -> A e. ( J |`t A ) ) |