Metamath Proof Explorer


Theorem restopn3

Description: If A is open, then A is open in the restriction to itself. (Contributed by Glauco Siliprandi, 21-Dec-2024)

Ref Expression
Assertion restopn3
|- ( ( J e. Top /\ A e. J ) -> A e. ( J |`t A ) )

Proof

Step Hyp Ref Expression
1 simpr
 |-  ( ( J e. Top /\ A e. J ) -> A e. J )
2 ssidd
 |-  ( ( J e. Top /\ A e. J ) -> A C_ A )
3 restopn2
 |-  ( ( J e. Top /\ A e. J ) -> ( A e. ( J |`t A ) <-> ( A e. J /\ A C_ A ) ) )
4 1 2 3 mpbir2and
 |-  ( ( J e. Top /\ A e. J ) -> A e. ( J |`t A ) )