Metamath Proof Explorer


Theorem restopnssd

Description: A topology restricted to an open set is a subset of the original topology. (Contributed by Glauco Siliprandi, 21-Dec-2024)

Ref Expression
Hypotheses restopnssd.1
|- ( ph -> J e. Top )
restopnssd.2
|- ( ph -> A e. J )
Assertion restopnssd
|- ( ph -> ( J |`t A ) C_ J )

Proof

Step Hyp Ref Expression
1 restopnssd.1
 |-  ( ph -> J e. Top )
2 restopnssd.2
 |-  ( ph -> A e. J )
3 simpr
 |-  ( ( ph /\ x e. ( J |`t A ) ) -> x e. ( J |`t A ) )
4 1 adantr
 |-  ( ( ph /\ x e. ( J |`t A ) ) -> J e. Top )
5 2 adantr
 |-  ( ( ph /\ x e. ( J |`t A ) ) -> A e. J )
6 restopn2
 |-  ( ( J e. Top /\ A e. J ) -> ( x e. ( J |`t A ) <-> ( x e. J /\ x C_ A ) ) )
7 4 5 6 syl2anc
 |-  ( ( ph /\ x e. ( J |`t A ) ) -> ( x e. ( J |`t A ) <-> ( x e. J /\ x C_ A ) ) )
8 3 7 mpbid
 |-  ( ( ph /\ x e. ( J |`t A ) ) -> ( x e. J /\ x C_ A ) )
9 8 simpld
 |-  ( ( ph /\ x e. ( J |`t A ) ) -> x e. J )
10 9 ssd
 |-  ( ph -> ( J |`t A ) C_ J )