Metamath Proof Explorer


Theorem restrcl

Description: Reverse closure for the subspace topology. (Contributed by Mario Carneiro, 19-Mar-2015) (Revised by Mario Carneiro, 1-May-2015)

Ref Expression
Assertion restrcl
|- ( ( J |`t A ) e. Top -> ( J e. _V /\ A e. _V ) )

Proof

Step Hyp Ref Expression
1 0opn
 |-  ( ( J |`t A ) e. Top -> (/) e. ( J |`t A ) )
2 n0i
 |-  ( (/) e. ( J |`t A ) -> -. ( J |`t A ) = (/) )
3 1 2 syl
 |-  ( ( J |`t A ) e. Top -> -. ( J |`t A ) = (/) )
4 restfn
 |-  |`t Fn ( _V X. _V )
5 4 fndmi
 |-  dom |`t = ( _V X. _V )
6 5 ndmov
 |-  ( -. ( J e. _V /\ A e. _V ) -> ( J |`t A ) = (/) )
7 3 6 nsyl2
 |-  ( ( J |`t A ) e. Top -> ( J e. _V /\ A e. _V ) )