Description: The subspace topology induced by a singleton. (Contributed by FL, 5-Jan-2009) (Revised by Mario Carneiro, 16-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | restsn2 | |- ( ( J e. ( TopOn ` X ) /\ A e. X ) -> ( J |`t { A } ) = ~P { A } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi | |- ( A e. X -> { A } C_ X ) |
|
2 | resttopon | |- ( ( J e. ( TopOn ` X ) /\ { A } C_ X ) -> ( J |`t { A } ) e. ( TopOn ` { A } ) ) |
|
3 | 1 2 | sylan2 | |- ( ( J e. ( TopOn ` X ) /\ A e. X ) -> ( J |`t { A } ) e. ( TopOn ` { A } ) ) |
4 | topsn | |- ( ( J |`t { A } ) e. ( TopOn ` { A } ) -> ( J |`t { A } ) = ~P { A } ) |
|
5 | 3 4 | syl | |- ( ( J e. ( TopOn ` X ) /\ A e. X ) -> ( J |`t { A } ) = ~P { A } ) |