Metamath Proof Explorer


Theorem restsn2

Description: The subspace topology induced by a singleton. (Contributed by FL, 5-Jan-2009) (Revised by Mario Carneiro, 16-Sep-2015)

Ref Expression
Assertion restsn2
|- ( ( J e. ( TopOn ` X ) /\ A e. X ) -> ( J |`t { A } ) = ~P { A } )

Proof

Step Hyp Ref Expression
1 snssi
 |-  ( A e. X -> { A } C_ X )
2 resttopon
 |-  ( ( J e. ( TopOn ` X ) /\ { A } C_ X ) -> ( J |`t { A } ) e. ( TopOn ` { A } ) )
3 1 2 sylan2
 |-  ( ( J e. ( TopOn ` X ) /\ A e. X ) -> ( J |`t { A } ) e. ( TopOn ` { A } ) )
4 topsn
 |-  ( ( J |`t { A } ) e. ( TopOn ` { A } ) -> ( J |`t { A } ) = ~P { A } )
5 3 4 syl
 |-  ( ( J e. ( TopOn ` X ) /\ A e. X ) -> ( J |`t { A } ) = ~P { A } )