Step |
Hyp |
Ref |
Expression |
1 |
|
n0i |
|- ( x e. ( J |`t A ) -> -. ( J |`t A ) = (/) ) |
2 |
|
restfn |
|- |`t Fn ( _V X. _V ) |
3 |
|
fndm |
|- ( |`t Fn ( _V X. _V ) -> dom |`t = ( _V X. _V ) ) |
4 |
2 3
|
ax-mp |
|- dom |`t = ( _V X. _V ) |
5 |
4
|
ndmov |
|- ( -. ( J e. _V /\ A e. _V ) -> ( J |`t A ) = (/) ) |
6 |
1 5
|
nsyl2 |
|- ( x e. ( J |`t A ) -> ( J e. _V /\ A e. _V ) ) |
7 |
|
elrest |
|- ( ( J e. _V /\ A e. _V ) -> ( x e. ( J |`t A ) <-> E. y e. J x = ( y i^i A ) ) ) |
8 |
6 7
|
syl |
|- ( x e. ( J |`t A ) -> ( x e. ( J |`t A ) <-> E. y e. J x = ( y i^i A ) ) ) |
9 |
8
|
ibi |
|- ( x e. ( J |`t A ) -> E. y e. J x = ( y i^i A ) ) |
10 |
|
inss2 |
|- ( y i^i A ) C_ A |
11 |
|
sseq1 |
|- ( x = ( y i^i A ) -> ( x C_ A <-> ( y i^i A ) C_ A ) ) |
12 |
10 11
|
mpbiri |
|- ( x = ( y i^i A ) -> x C_ A ) |
13 |
12
|
rexlimivw |
|- ( E. y e. J x = ( y i^i A ) -> x C_ A ) |
14 |
9 13
|
syl |
|- ( x e. ( J |`t A ) -> x C_ A ) |
15 |
|
velpw |
|- ( x e. ~P A <-> x C_ A ) |
16 |
14 15
|
sylibr |
|- ( x e. ( J |`t A ) -> x e. ~P A ) |
17 |
16
|
ssriv |
|- ( J |`t A ) C_ ~P A |