Metamath Proof Explorer


Theorem restsspw

Description: The subspace topology is a collection of subsets of the restriction set. (Contributed by Mario Carneiro, 13-Aug-2015)

Ref Expression
Assertion restsspw
|- ( J |`t A ) C_ ~P A

Proof

Step Hyp Ref Expression
1 n0i
 |-  ( x e. ( J |`t A ) -> -. ( J |`t A ) = (/) )
2 restfn
 |-  |`t Fn ( _V X. _V )
3 fndm
 |-  ( |`t Fn ( _V X. _V ) -> dom |`t = ( _V X. _V ) )
4 2 3 ax-mp
 |-  dom |`t = ( _V X. _V )
5 4 ndmov
 |-  ( -. ( J e. _V /\ A e. _V ) -> ( J |`t A ) = (/) )
6 1 5 nsyl2
 |-  ( x e. ( J |`t A ) -> ( J e. _V /\ A e. _V ) )
7 elrest
 |-  ( ( J e. _V /\ A e. _V ) -> ( x e. ( J |`t A ) <-> E. y e. J x = ( y i^i A ) ) )
8 6 7 syl
 |-  ( x e. ( J |`t A ) -> ( x e. ( J |`t A ) <-> E. y e. J x = ( y i^i A ) ) )
9 8 ibi
 |-  ( x e. ( J |`t A ) -> E. y e. J x = ( y i^i A ) )
10 inss2
 |-  ( y i^i A ) C_ A
11 sseq1
 |-  ( x = ( y i^i A ) -> ( x C_ A <-> ( y i^i A ) C_ A ) )
12 10 11 mpbiri
 |-  ( x = ( y i^i A ) -> x C_ A )
13 12 rexlimivw
 |-  ( E. y e. J x = ( y i^i A ) -> x C_ A )
14 9 13 syl
 |-  ( x e. ( J |`t A ) -> x C_ A )
15 velpw
 |-  ( x e. ~P A <-> x C_ A )
16 14 15 sylibr
 |-  ( x e. ( J |`t A ) -> x e. ~P A )
17 16 ssriv
 |-  ( J |`t A ) C_ ~P A