Metamath Proof Explorer


Theorem restsubel

Description: A subset belongs in the space it generates via restriction. (Contributed by Glauco Siliprandi, 21-Dec-2024)

Ref Expression
Hypotheses restsubel.1
|- ( ph -> J e. V )
restsubel.2
|- ( ph -> U. J e. J )
restsubel.3
|- ( ph -> A C_ U. J )
Assertion restsubel
|- ( ph -> A e. ( J |`t A ) )

Proof

Step Hyp Ref Expression
1 restsubel.1
 |-  ( ph -> J e. V )
2 restsubel.2
 |-  ( ph -> U. J e. J )
3 restsubel.3
 |-  ( ph -> A C_ U. J )
4 ineq1
 |-  ( x = U. J -> ( x i^i A ) = ( U. J i^i A ) )
5 4 eqeq2d
 |-  ( x = U. J -> ( A = ( x i^i A ) <-> A = ( U. J i^i A ) ) )
6 5 adantl
 |-  ( ( ph /\ x = U. J ) -> ( A = ( x i^i A ) <-> A = ( U. J i^i A ) ) )
7 incom
 |-  ( U. J i^i A ) = ( A i^i U. J )
8 7 a1i
 |-  ( ph -> ( U. J i^i A ) = ( A i^i U. J ) )
9 df-ss
 |-  ( A C_ U. J <-> ( A i^i U. J ) = A )
10 3 9 sylib
 |-  ( ph -> ( A i^i U. J ) = A )
11 8 10 eqtrd
 |-  ( ph -> ( U. J i^i A ) = A )
12 11 eqcomd
 |-  ( ph -> A = ( U. J i^i A ) )
13 2 6 12 rspcedvd
 |-  ( ph -> E. x e. J A = ( x i^i A ) )
14 2 3 ssexd
 |-  ( ph -> A e. _V )
15 elrest
 |-  ( ( J e. V /\ A e. _V ) -> ( A e. ( J |`t A ) <-> E. x e. J A = ( x i^i A ) ) )
16 1 14 15 syl2anc
 |-  ( ph -> ( A e. ( J |`t A ) <-> E. x e. J A = ( x i^i A ) ) )
17 13 16 mpbird
 |-  ( ph -> A e. ( J |`t A ) )