Step |
Hyp |
Ref |
Expression |
1 |
|
restsubel.1 |
|- ( ph -> J e. V ) |
2 |
|
restsubel.2 |
|- ( ph -> U. J e. J ) |
3 |
|
restsubel.3 |
|- ( ph -> A C_ U. J ) |
4 |
|
ineq1 |
|- ( x = U. J -> ( x i^i A ) = ( U. J i^i A ) ) |
5 |
4
|
eqeq2d |
|- ( x = U. J -> ( A = ( x i^i A ) <-> A = ( U. J i^i A ) ) ) |
6 |
5
|
adantl |
|- ( ( ph /\ x = U. J ) -> ( A = ( x i^i A ) <-> A = ( U. J i^i A ) ) ) |
7 |
|
incom |
|- ( U. J i^i A ) = ( A i^i U. J ) |
8 |
7
|
a1i |
|- ( ph -> ( U. J i^i A ) = ( A i^i U. J ) ) |
9 |
|
df-ss |
|- ( A C_ U. J <-> ( A i^i U. J ) = A ) |
10 |
3 9
|
sylib |
|- ( ph -> ( A i^i U. J ) = A ) |
11 |
8 10
|
eqtrd |
|- ( ph -> ( U. J i^i A ) = A ) |
12 |
11
|
eqcomd |
|- ( ph -> A = ( U. J i^i A ) ) |
13 |
2 6 12
|
rspcedvd |
|- ( ph -> E. x e. J A = ( x i^i A ) ) |
14 |
2 3
|
ssexd |
|- ( ph -> A e. _V ) |
15 |
|
elrest |
|- ( ( J e. V /\ A e. _V ) -> ( A e. ( J |`t A ) <-> E. x e. J A = ( x i^i A ) ) ) |
16 |
1 14 15
|
syl2anc |
|- ( ph -> ( A e. ( J |`t A ) <-> E. x e. J A = ( x i^i A ) ) ) |
17 |
13 16
|
mpbird |
|- ( ph -> A e. ( J |`t A ) ) |