| Step |
Hyp |
Ref |
Expression |
| 1 |
|
topontop |
|- ( J e. ( TopOn ` X ) -> J e. Top ) |
| 2 |
|
id |
|- ( A C_ X -> A C_ X ) |
| 3 |
|
toponmax |
|- ( J e. ( TopOn ` X ) -> X e. J ) |
| 4 |
|
ssexg |
|- ( ( A C_ X /\ X e. J ) -> A e. _V ) |
| 5 |
2 3 4
|
syl2anr |
|- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> A e. _V ) |
| 6 |
|
resttop |
|- ( ( J e. Top /\ A e. _V ) -> ( J |`t A ) e. Top ) |
| 7 |
1 5 6
|
syl2an2r |
|- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( J |`t A ) e. Top ) |
| 8 |
|
simpr |
|- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> A C_ X ) |
| 9 |
|
sseqin2 |
|- ( A C_ X <-> ( X i^i A ) = A ) |
| 10 |
8 9
|
sylib |
|- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( X i^i A ) = A ) |
| 11 |
|
simpl |
|- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> J e. ( TopOn ` X ) ) |
| 12 |
3
|
adantr |
|- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> X e. J ) |
| 13 |
|
elrestr |
|- ( ( J e. ( TopOn ` X ) /\ A e. _V /\ X e. J ) -> ( X i^i A ) e. ( J |`t A ) ) |
| 14 |
11 5 12 13
|
syl3anc |
|- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( X i^i A ) e. ( J |`t A ) ) |
| 15 |
10 14
|
eqeltrrd |
|- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> A e. ( J |`t A ) ) |
| 16 |
|
elssuni |
|- ( A e. ( J |`t A ) -> A C_ U. ( J |`t A ) ) |
| 17 |
15 16
|
syl |
|- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> A C_ U. ( J |`t A ) ) |
| 18 |
|
restval |
|- ( ( J e. ( TopOn ` X ) /\ A e. _V ) -> ( J |`t A ) = ran ( x e. J |-> ( x i^i A ) ) ) |
| 19 |
5 18
|
syldan |
|- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( J |`t A ) = ran ( x e. J |-> ( x i^i A ) ) ) |
| 20 |
|
inss2 |
|- ( x i^i A ) C_ A |
| 21 |
|
vex |
|- x e. _V |
| 22 |
21
|
inex1 |
|- ( x i^i A ) e. _V |
| 23 |
22
|
elpw |
|- ( ( x i^i A ) e. ~P A <-> ( x i^i A ) C_ A ) |
| 24 |
20 23
|
mpbir |
|- ( x i^i A ) e. ~P A |
| 25 |
24
|
a1i |
|- ( ( ( J e. ( TopOn ` X ) /\ A C_ X ) /\ x e. J ) -> ( x i^i A ) e. ~P A ) |
| 26 |
25
|
fmpttd |
|- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( x e. J |-> ( x i^i A ) ) : J --> ~P A ) |
| 27 |
26
|
frnd |
|- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ran ( x e. J |-> ( x i^i A ) ) C_ ~P A ) |
| 28 |
19 27
|
eqsstrd |
|- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( J |`t A ) C_ ~P A ) |
| 29 |
|
sspwuni |
|- ( ( J |`t A ) C_ ~P A <-> U. ( J |`t A ) C_ A ) |
| 30 |
28 29
|
sylib |
|- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> U. ( J |`t A ) C_ A ) |
| 31 |
17 30
|
eqssd |
|- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> A = U. ( J |`t A ) ) |
| 32 |
|
istopon |
|- ( ( J |`t A ) e. ( TopOn ` A ) <-> ( ( J |`t A ) e. Top /\ A = U. ( J |`t A ) ) ) |
| 33 |
7 31 32
|
sylanbrc |
|- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( J |`t A ) e. ( TopOn ` A ) ) |