Description: The underlying set of a subspace topology. (Contributed by FL, 5-Jan-2009) (Revised by Mario Carneiro, 13-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | restuni.1 | |- X = U. J |
|
Assertion | restuni | |- ( ( J e. Top /\ A C_ X ) -> A = U. ( J |`t A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restuni.1 | |- X = U. J |
|
2 | 1 | toptopon | |- ( J e. Top <-> J e. ( TopOn ` X ) ) |
3 | resttopon | |- ( ( J e. ( TopOn ` X ) /\ A C_ X ) -> ( J |`t A ) e. ( TopOn ` A ) ) |
|
4 | 2 3 | sylanb | |- ( ( J e. Top /\ A C_ X ) -> ( J |`t A ) e. ( TopOn ` A ) ) |
5 | toponuni | |- ( ( J |`t A ) e. ( TopOn ` A ) -> A = U. ( J |`t A ) ) |
|
6 | 4 5 | syl | |- ( ( J e. Top /\ A C_ X ) -> A = U. ( J |`t A ) ) |