Metamath Proof Explorer


Theorem restuni5

Description: The underlying set of a subspace induced by the ` |``t ` operator. The result can be applied, for instance, to topologies and sigma-algebras. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis restuni5.1
|- X = U. J
Assertion restuni5
|- ( ( J e. V /\ A C_ X ) -> A = U. ( J |`t A ) )

Proof

Step Hyp Ref Expression
1 restuni5.1
 |-  X = U. J
2 simpl
 |-  ( ( J e. V /\ A C_ X ) -> J e. V )
3 id
 |-  ( A C_ X -> A C_ X )
4 3 1 sseqtrdi
 |-  ( A C_ X -> A C_ U. J )
5 4 adantl
 |-  ( ( J e. V /\ A C_ X ) -> A C_ U. J )
6 2 5 restuni4
 |-  ( ( J e. V /\ A C_ X ) -> U. ( J |`t A ) = A )
7 6 eqcomd
 |-  ( ( J e. V /\ A C_ X ) -> A = U. ( J |`t A ) )