Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) -> ( U e. ( UnifOn ` X ) /\ A C_ X ) ) |
2 |
|
fvexd |
|- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> ( unifTop ` U ) e. _V ) |
3 |
|
elfvex |
|- ( U e. ( UnifOn ` X ) -> X e. _V ) |
4 |
3
|
adantr |
|- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> X e. _V ) |
5 |
|
simpr |
|- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> A C_ X ) |
6 |
4 5
|
ssexd |
|- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> A e. _V ) |
7 |
|
elrest |
|- ( ( ( unifTop ` U ) e. _V /\ A e. _V ) -> ( b e. ( ( unifTop ` U ) |`t A ) <-> E. a e. ( unifTop ` U ) b = ( a i^i A ) ) ) |
8 |
2 6 7
|
syl2anc |
|- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> ( b e. ( ( unifTop ` U ) |`t A ) <-> E. a e. ( unifTop ` U ) b = ( a i^i A ) ) ) |
9 |
8
|
biimpa |
|- ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) -> E. a e. ( unifTop ` U ) b = ( a i^i A ) ) |
10 |
|
inss2 |
|- ( a i^i A ) C_ A |
11 |
|
sseq1 |
|- ( b = ( a i^i A ) -> ( b C_ A <-> ( a i^i A ) C_ A ) ) |
12 |
10 11
|
mpbiri |
|- ( b = ( a i^i A ) -> b C_ A ) |
13 |
12
|
rexlimivw |
|- ( E. a e. ( unifTop ` U ) b = ( a i^i A ) -> b C_ A ) |
14 |
9 13
|
syl |
|- ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) -> b C_ A ) |
15 |
|
simp-5l |
|- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) /\ x e. b ) /\ a e. ( unifTop ` U ) ) /\ b = ( a i^i A ) ) -> U e. ( UnifOn ` X ) ) |
16 |
15
|
ad2antrr |
|- ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) /\ x e. b ) /\ a e. ( unifTop ` U ) ) /\ b = ( a i^i A ) ) /\ u e. U ) /\ ( u " { x } ) C_ a ) -> U e. ( UnifOn ` X ) ) |
17 |
6
|
ad6antr |
|- ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) /\ x e. b ) /\ a e. ( unifTop ` U ) ) /\ b = ( a i^i A ) ) /\ u e. U ) /\ ( u " { x } ) C_ a ) -> A e. _V ) |
18 |
17 17
|
xpexd |
|- ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) /\ x e. b ) /\ a e. ( unifTop ` U ) ) /\ b = ( a i^i A ) ) /\ u e. U ) /\ ( u " { x } ) C_ a ) -> ( A X. A ) e. _V ) |
19 |
|
simplr |
|- ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) /\ x e. b ) /\ a e. ( unifTop ` U ) ) /\ b = ( a i^i A ) ) /\ u e. U ) /\ ( u " { x } ) C_ a ) -> u e. U ) |
20 |
|
elrestr |
|- ( ( U e. ( UnifOn ` X ) /\ ( A X. A ) e. _V /\ u e. U ) -> ( u i^i ( A X. A ) ) e. ( U |`t ( A X. A ) ) ) |
21 |
16 18 19 20
|
syl3anc |
|- ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) /\ x e. b ) /\ a e. ( unifTop ` U ) ) /\ b = ( a i^i A ) ) /\ u e. U ) /\ ( u " { x } ) C_ a ) -> ( u i^i ( A X. A ) ) e. ( U |`t ( A X. A ) ) ) |
22 |
|
inss1 |
|- ( u i^i ( A X. A ) ) C_ u |
23 |
|
imass1 |
|- ( ( u i^i ( A X. A ) ) C_ u -> ( ( u i^i ( A X. A ) ) " { x } ) C_ ( u " { x } ) ) |
24 |
22 23
|
ax-mp |
|- ( ( u i^i ( A X. A ) ) " { x } ) C_ ( u " { x } ) |
25 |
|
sstr |
|- ( ( ( ( u i^i ( A X. A ) ) " { x } ) C_ ( u " { x } ) /\ ( u " { x } ) C_ a ) -> ( ( u i^i ( A X. A ) ) " { x } ) C_ a ) |
26 |
24 25
|
mpan |
|- ( ( u " { x } ) C_ a -> ( ( u i^i ( A X. A ) ) " { x } ) C_ a ) |
27 |
|
imassrn |
|- ( ( u i^i ( A X. A ) ) " { x } ) C_ ran ( u i^i ( A X. A ) ) |
28 |
|
rnin |
|- ran ( u i^i ( A X. A ) ) C_ ( ran u i^i ran ( A X. A ) ) |
29 |
27 28
|
sstri |
|- ( ( u i^i ( A X. A ) ) " { x } ) C_ ( ran u i^i ran ( A X. A ) ) |
30 |
|
inss2 |
|- ( ran u i^i ran ( A X. A ) ) C_ ran ( A X. A ) |
31 |
29 30
|
sstri |
|- ( ( u i^i ( A X. A ) ) " { x } ) C_ ran ( A X. A ) |
32 |
|
rnxpid |
|- ran ( A X. A ) = A |
33 |
31 32
|
sseqtri |
|- ( ( u i^i ( A X. A ) ) " { x } ) C_ A |
34 |
33
|
a1i |
|- ( ( u " { x } ) C_ a -> ( ( u i^i ( A X. A ) ) " { x } ) C_ A ) |
35 |
26 34
|
ssind |
|- ( ( u " { x } ) C_ a -> ( ( u i^i ( A X. A ) ) " { x } ) C_ ( a i^i A ) ) |
36 |
35
|
adantl |
|- ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) /\ x e. b ) /\ a e. ( unifTop ` U ) ) /\ b = ( a i^i A ) ) /\ u e. U ) /\ ( u " { x } ) C_ a ) -> ( ( u i^i ( A X. A ) ) " { x } ) C_ ( a i^i A ) ) |
37 |
|
simpllr |
|- ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) /\ x e. b ) /\ a e. ( unifTop ` U ) ) /\ b = ( a i^i A ) ) /\ u e. U ) /\ ( u " { x } ) C_ a ) -> b = ( a i^i A ) ) |
38 |
36 37
|
sseqtrrd |
|- ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) /\ x e. b ) /\ a e. ( unifTop ` U ) ) /\ b = ( a i^i A ) ) /\ u e. U ) /\ ( u " { x } ) C_ a ) -> ( ( u i^i ( A X. A ) ) " { x } ) C_ b ) |
39 |
|
imaeq1 |
|- ( v = ( u i^i ( A X. A ) ) -> ( v " { x } ) = ( ( u i^i ( A X. A ) ) " { x } ) ) |
40 |
39
|
sseq1d |
|- ( v = ( u i^i ( A X. A ) ) -> ( ( v " { x } ) C_ b <-> ( ( u i^i ( A X. A ) ) " { x } ) C_ b ) ) |
41 |
40
|
rspcev |
|- ( ( ( u i^i ( A X. A ) ) e. ( U |`t ( A X. A ) ) /\ ( ( u i^i ( A X. A ) ) " { x } ) C_ b ) -> E. v e. ( U |`t ( A X. A ) ) ( v " { x } ) C_ b ) |
42 |
21 38 41
|
syl2anc |
|- ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) /\ x e. b ) /\ a e. ( unifTop ` U ) ) /\ b = ( a i^i A ) ) /\ u e. U ) /\ ( u " { x } ) C_ a ) -> E. v e. ( U |`t ( A X. A ) ) ( v " { x } ) C_ b ) |
43 |
|
simplr |
|- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) /\ x e. b ) /\ a e. ( unifTop ` U ) ) /\ b = ( a i^i A ) ) -> a e. ( unifTop ` U ) ) |
44 |
|
simpllr |
|- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) /\ x e. b ) /\ a e. ( unifTop ` U ) ) /\ b = ( a i^i A ) ) -> x e. b ) |
45 |
|
simpr |
|- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) /\ x e. b ) /\ a e. ( unifTop ` U ) ) /\ b = ( a i^i A ) ) -> b = ( a i^i A ) ) |
46 |
44 45
|
eleqtrd |
|- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) /\ x e. b ) /\ a e. ( unifTop ` U ) ) /\ b = ( a i^i A ) ) -> x e. ( a i^i A ) ) |
47 |
46
|
elin1d |
|- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) /\ x e. b ) /\ a e. ( unifTop ` U ) ) /\ b = ( a i^i A ) ) -> x e. a ) |
48 |
|
elutop |
|- ( U e. ( UnifOn ` X ) -> ( a e. ( unifTop ` U ) <-> ( a C_ X /\ A. x e. a E. u e. U ( u " { x } ) C_ a ) ) ) |
49 |
48
|
simplbda |
|- ( ( U e. ( UnifOn ` X ) /\ a e. ( unifTop ` U ) ) -> A. x e. a E. u e. U ( u " { x } ) C_ a ) |
50 |
49
|
r19.21bi |
|- ( ( ( U e. ( UnifOn ` X ) /\ a e. ( unifTop ` U ) ) /\ x e. a ) -> E. u e. U ( u " { x } ) C_ a ) |
51 |
15 43 47 50
|
syl21anc |
|- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) /\ x e. b ) /\ a e. ( unifTop ` U ) ) /\ b = ( a i^i A ) ) -> E. u e. U ( u " { x } ) C_ a ) |
52 |
42 51
|
r19.29a |
|- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) /\ x e. b ) /\ a e. ( unifTop ` U ) ) /\ b = ( a i^i A ) ) -> E. v e. ( U |`t ( A X. A ) ) ( v " { x } ) C_ b ) |
53 |
9
|
adantr |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) /\ x e. b ) -> E. a e. ( unifTop ` U ) b = ( a i^i A ) ) |
54 |
52 53
|
r19.29a |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) /\ x e. b ) -> E. v e. ( U |`t ( A X. A ) ) ( v " { x } ) C_ b ) |
55 |
54
|
ralrimiva |
|- ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) -> A. x e. b E. v e. ( U |`t ( A X. A ) ) ( v " { x } ) C_ b ) |
56 |
|
trust |
|- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> ( U |`t ( A X. A ) ) e. ( UnifOn ` A ) ) |
57 |
|
elutop |
|- ( ( U |`t ( A X. A ) ) e. ( UnifOn ` A ) -> ( b e. ( unifTop ` ( U |`t ( A X. A ) ) ) <-> ( b C_ A /\ A. x e. b E. v e. ( U |`t ( A X. A ) ) ( v " { x } ) C_ b ) ) ) |
58 |
56 57
|
syl |
|- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> ( b e. ( unifTop ` ( U |`t ( A X. A ) ) ) <-> ( b C_ A /\ A. x e. b E. v e. ( U |`t ( A X. A ) ) ( v " { x } ) C_ b ) ) ) |
59 |
58
|
biimpar |
|- ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ ( b C_ A /\ A. x e. b E. v e. ( U |`t ( A X. A ) ) ( v " { x } ) C_ b ) ) -> b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) |
60 |
1 14 55 59
|
syl12anc |
|- ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ b e. ( ( unifTop ` U ) |`t A ) ) -> b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) |
61 |
60
|
ex |
|- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> ( b e. ( ( unifTop ` U ) |`t A ) -> b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) ) |
62 |
61
|
ssrdv |
|- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> ( ( unifTop ` U ) |`t A ) C_ ( unifTop ` ( U |`t ( A X. A ) ) ) ) |