Metamath Proof Explorer


Theorem resubcl

Description: Closure law for subtraction of reals. (Contributed by NM, 20-Jan-1997)

Ref Expression
Assertion resubcl
|- ( ( A e. RR /\ B e. RR ) -> ( A - B ) e. RR )

Proof

Step Hyp Ref Expression
1 recn
 |-  ( A e. RR -> A e. CC )
2 recn
 |-  ( B e. RR -> B e. CC )
3 negsub
 |-  ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A - B ) )
4 1 2 3 syl2an
 |-  ( ( A e. RR /\ B e. RR ) -> ( A + -u B ) = ( A - B ) )
5 renegcl
 |-  ( B e. RR -> -u B e. RR )
6 readdcl
 |-  ( ( A e. RR /\ -u B e. RR ) -> ( A + -u B ) e. RR )
7 5 6 sylan2
 |-  ( ( A e. RR /\ B e. RR ) -> ( A + -u B ) e. RR )
8 4 7 eqeltrrd
 |-  ( ( A e. RR /\ B e. RR ) -> ( A - B ) e. RR )