Description: Closure law for subtraction of reals. (Contributed by NM, 20-Jan-1997)
Ref | Expression | ||
---|---|---|---|
Assertion | resubcl | |- ( ( A e. RR /\ B e. RR ) -> ( A - B ) e. RR ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recn | |- ( A e. RR -> A e. CC ) |
|
2 | recn | |- ( B e. RR -> B e. CC ) |
|
3 | negsub | |- ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A - B ) ) |
|
4 | 1 2 3 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( A + -u B ) = ( A - B ) ) |
5 | renegcl | |- ( B e. RR -> -u B e. RR ) |
|
6 | readdcl | |- ( ( A e. RR /\ -u B e. RR ) -> ( A + -u B ) e. RR ) |
|
7 | 5 6 | sylan2 | |- ( ( A e. RR /\ B e. RR ) -> ( A + -u B ) e. RR ) |
8 | 4 7 | eqeltrrd | |- ( ( A e. RR /\ B e. RR ) -> ( A - B ) e. RR ) |