Metamath Proof Explorer


Theorem resubcld

Description: Closure law for subtraction of reals. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses renegcld.1
|- ( ph -> A e. RR )
resubcld.2
|- ( ph -> B e. RR )
Assertion resubcld
|- ( ph -> ( A - B ) e. RR )

Proof

Step Hyp Ref Expression
1 renegcld.1
 |-  ( ph -> A e. RR )
2 resubcld.2
 |-  ( ph -> B e. RR )
3 resubcl
 |-  ( ( A e. RR /\ B e. RR ) -> ( A - B ) e. RR )
4 1 2 3 syl2anc
 |-  ( ph -> ( A - B ) e. RR )