Step |
Hyp |
Ref |
Expression |
1 |
|
recn |
|- ( x e. RR -> x e. CC ) |
2 |
|
readdcl |
|- ( ( x e. RR /\ y e. RR ) -> ( x + y ) e. RR ) |
3 |
|
renegcl |
|- ( x e. RR -> -u x e. RR ) |
4 |
|
1re |
|- 1 e. RR |
5 |
|
remulcl |
|- ( ( x e. RR /\ y e. RR ) -> ( x x. y ) e. RR ) |
6 |
|
rereccl |
|- ( ( x e. RR /\ x =/= 0 ) -> ( 1 / x ) e. RR ) |
7 |
1 2 3 4 5 6
|
cnsubdrglem |
|- ( RR e. ( SubRing ` CCfld ) /\ ( CCfld |`s RR ) e. DivRing ) |
8 |
|
df-refld |
|- RRfld = ( CCfld |`s RR ) |
9 |
8
|
eleq1i |
|- ( RRfld e. DivRing <-> ( CCfld |`s RR ) e. DivRing ) |
10 |
9
|
anbi2i |
|- ( ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing ) <-> ( RR e. ( SubRing ` CCfld ) /\ ( CCfld |`s RR ) e. DivRing ) ) |
11 |
7 10
|
mpbir |
|- ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing ) |