| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resubgval.m |  |-  .- = ( -g ` RRfld ) | 
						
							| 2 |  | resubdrg |  |-  ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing ) | 
						
							| 3 | 2 | simpli |  |-  RR e. ( SubRing ` CCfld ) | 
						
							| 4 |  | subrgsubg |  |-  ( RR e. ( SubRing ` CCfld ) -> RR e. ( SubGrp ` CCfld ) ) | 
						
							| 5 | 3 4 | ax-mp |  |-  RR e. ( SubGrp ` CCfld ) | 
						
							| 6 |  | cnfldsub |  |-  - = ( -g ` CCfld ) | 
						
							| 7 |  | df-refld |  |-  RRfld = ( CCfld |`s RR ) | 
						
							| 8 | 6 7 1 | subgsub |  |-  ( ( RR e. ( SubGrp ` CCfld ) /\ X e. RR /\ Y e. RR ) -> ( X - Y ) = ( X .- Y ) ) | 
						
							| 9 | 5 8 | mp3an1 |  |-  ( ( X e. RR /\ Y e. RR ) -> ( X - Y ) = ( X .- Y ) ) |