| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resubmet.1 |  |-  R = ( topGen ` ran (,) ) | 
						
							| 2 |  | resubmet.2 |  |-  J = ( MetOpen ` ( ( abs o. - ) |` ( A X. A ) ) ) | 
						
							| 3 |  | xpss12 |  |-  ( ( A C_ RR /\ A C_ RR ) -> ( A X. A ) C_ ( RR X. RR ) ) | 
						
							| 4 | 3 | anidms |  |-  ( A C_ RR -> ( A X. A ) C_ ( RR X. RR ) ) | 
						
							| 5 | 4 | resabs1d |  |-  ( A C_ RR -> ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( A X. A ) ) = ( ( abs o. - ) |` ( A X. A ) ) ) | 
						
							| 6 | 5 | fveq2d |  |-  ( A C_ RR -> ( MetOpen ` ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( A X. A ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( A X. A ) ) ) ) | 
						
							| 7 | 2 6 | eqtr4id |  |-  ( A C_ RR -> J = ( MetOpen ` ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( A X. A ) ) ) ) | 
						
							| 8 |  | eqid |  |-  ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) | 
						
							| 9 | 8 | rexmet |  |-  ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) | 
						
							| 10 |  | eqid |  |-  ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( A X. A ) ) = ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( A X. A ) ) | 
						
							| 11 |  | eqid |  |-  ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) | 
						
							| 12 | 8 11 | tgioo |  |-  ( topGen ` ran (,) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) | 
						
							| 13 | 1 12 | eqtri |  |-  R = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) | 
						
							| 14 |  | eqid |  |-  ( MetOpen ` ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( A X. A ) ) ) = ( MetOpen ` ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( A X. A ) ) ) | 
						
							| 15 | 10 13 14 | metrest |  |-  ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) /\ A C_ RR ) -> ( R |`t A ) = ( MetOpen ` ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( A X. A ) ) ) ) | 
						
							| 16 | 9 15 | mpan |  |-  ( A C_ RR -> ( R |`t A ) = ( MetOpen ` ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( A X. A ) ) ) ) | 
						
							| 17 | 7 16 | eqtr4d |  |-  ( A C_ RR -> J = ( R |`t A ) ) |