Step |
Hyp |
Ref |
Expression |
1 |
|
resubmet.1 |
|- R = ( topGen ` ran (,) ) |
2 |
|
resubmet.2 |
|- J = ( MetOpen ` ( ( abs o. - ) |` ( A X. A ) ) ) |
3 |
|
xpss12 |
|- ( ( A C_ RR /\ A C_ RR ) -> ( A X. A ) C_ ( RR X. RR ) ) |
4 |
3
|
anidms |
|- ( A C_ RR -> ( A X. A ) C_ ( RR X. RR ) ) |
5 |
4
|
resabs1d |
|- ( A C_ RR -> ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( A X. A ) ) = ( ( abs o. - ) |` ( A X. A ) ) ) |
6 |
5
|
fveq2d |
|- ( A C_ RR -> ( MetOpen ` ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( A X. A ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( A X. A ) ) ) ) |
7 |
2 6
|
eqtr4id |
|- ( A C_ RR -> J = ( MetOpen ` ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( A X. A ) ) ) ) |
8 |
|
eqid |
|- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
9 |
8
|
rexmet |
|- ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) |
10 |
|
eqid |
|- ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( A X. A ) ) = ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( A X. A ) ) |
11 |
|
eqid |
|- ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
12 |
8 11
|
tgioo |
|- ( topGen ` ran (,) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
13 |
1 12
|
eqtri |
|- R = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
14 |
|
eqid |
|- ( MetOpen ` ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( A X. A ) ) ) = ( MetOpen ` ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( A X. A ) ) ) |
15 |
10 13 14
|
metrest |
|- ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) /\ A C_ RR ) -> ( R |`t A ) = ( MetOpen ` ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( A X. A ) ) ) ) |
16 |
9 15
|
mpan |
|- ( A C_ RR -> ( R |`t A ) = ( MetOpen ` ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( A X. A ) ) ) ) |
17 |
7 16
|
eqtr4d |
|- ( A C_ RR -> J = ( R |`t A ) ) |