Metamath Proof Explorer


Theorem resum2sqcl

Description: The sum of two squares of real numbers is a real number. (Contributed by AV, 7-Feb-2023)

Ref Expression
Hypothesis resum2sqcl.q
|- Q = ( ( A ^ 2 ) + ( B ^ 2 ) )
Assertion resum2sqcl
|- ( ( A e. RR /\ B e. RR ) -> Q e. RR )

Proof

Step Hyp Ref Expression
1 resum2sqcl.q
 |-  Q = ( ( A ^ 2 ) + ( B ^ 2 ) )
2 simpl
 |-  ( ( A e. RR /\ B e. RR ) -> A e. RR )
3 2 resqcld
 |-  ( ( A e. RR /\ B e. RR ) -> ( A ^ 2 ) e. RR )
4 simpr
 |-  ( ( A e. RR /\ B e. RR ) -> B e. RR )
5 4 resqcld
 |-  ( ( A e. RR /\ B e. RR ) -> ( B ^ 2 ) e. RR )
6 3 5 readdcld
 |-  ( ( A e. RR /\ B e. RR ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) e. RR )
7 1 6 eqeltrid
 |-  ( ( A e. RR /\ B e. RR ) -> Q e. RR )