Description: The sum of two squares of real numbers is a real number. (Contributed by AV, 7-Feb-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | resum2sqcl.q | |- Q = ( ( A ^ 2 ) + ( B ^ 2 ) ) |
|
Assertion | resum2sqcl | |- ( ( A e. RR /\ B e. RR ) -> Q e. RR ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resum2sqcl.q | |- Q = ( ( A ^ 2 ) + ( B ^ 2 ) ) |
|
2 | simpl | |- ( ( A e. RR /\ B e. RR ) -> A e. RR ) |
|
3 | 2 | resqcld | |- ( ( A e. RR /\ B e. RR ) -> ( A ^ 2 ) e. RR ) |
4 | simpr | |- ( ( A e. RR /\ B e. RR ) -> B e. RR ) |
|
5 | 4 | resqcld | |- ( ( A e. RR /\ B e. RR ) -> ( B ^ 2 ) e. RR ) |
6 | 3 5 | readdcld | |- ( ( A e. RR /\ B e. RR ) -> ( ( A ^ 2 ) + ( B ^ 2 ) ) e. RR ) |
7 | 1 6 | eqeltrid | |- ( ( A e. RR /\ B e. RR ) -> Q e. RR ) |