Step |
Hyp |
Ref |
Expression |
1 |
|
resunimafz0.i |
|- ( ph -> Fun I ) |
2 |
|
resunimafz0.f |
|- ( ph -> F : ( 0 ..^ ( # ` F ) ) --> dom I ) |
3 |
|
resunimafz0.n |
|- ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) |
4 |
|
imaundi |
|- ( F " ( ( 0 ..^ N ) u. { N } ) ) = ( ( F " ( 0 ..^ N ) ) u. ( F " { N } ) ) |
5 |
|
elfzonn0 |
|- ( N e. ( 0 ..^ ( # ` F ) ) -> N e. NN0 ) |
6 |
3 5
|
syl |
|- ( ph -> N e. NN0 ) |
7 |
|
elnn0uz |
|- ( N e. NN0 <-> N e. ( ZZ>= ` 0 ) ) |
8 |
6 7
|
sylib |
|- ( ph -> N e. ( ZZ>= ` 0 ) ) |
9 |
|
fzisfzounsn |
|- ( N e. ( ZZ>= ` 0 ) -> ( 0 ... N ) = ( ( 0 ..^ N ) u. { N } ) ) |
10 |
8 9
|
syl |
|- ( ph -> ( 0 ... N ) = ( ( 0 ..^ N ) u. { N } ) ) |
11 |
10
|
imaeq2d |
|- ( ph -> ( F " ( 0 ... N ) ) = ( F " ( ( 0 ..^ N ) u. { N } ) ) ) |
12 |
2
|
ffnd |
|- ( ph -> F Fn ( 0 ..^ ( # ` F ) ) ) |
13 |
|
fnsnfv |
|- ( ( F Fn ( 0 ..^ ( # ` F ) ) /\ N e. ( 0 ..^ ( # ` F ) ) ) -> { ( F ` N ) } = ( F " { N } ) ) |
14 |
12 3 13
|
syl2anc |
|- ( ph -> { ( F ` N ) } = ( F " { N } ) ) |
15 |
14
|
uneq2d |
|- ( ph -> ( ( F " ( 0 ..^ N ) ) u. { ( F ` N ) } ) = ( ( F " ( 0 ..^ N ) ) u. ( F " { N } ) ) ) |
16 |
4 11 15
|
3eqtr4a |
|- ( ph -> ( F " ( 0 ... N ) ) = ( ( F " ( 0 ..^ N ) ) u. { ( F ` N ) } ) ) |
17 |
16
|
reseq2d |
|- ( ph -> ( I |` ( F " ( 0 ... N ) ) ) = ( I |` ( ( F " ( 0 ..^ N ) ) u. { ( F ` N ) } ) ) ) |
18 |
|
resundi |
|- ( I |` ( ( F " ( 0 ..^ N ) ) u. { ( F ` N ) } ) ) = ( ( I |` ( F " ( 0 ..^ N ) ) ) u. ( I |` { ( F ` N ) } ) ) |
19 |
17 18
|
eqtrdi |
|- ( ph -> ( I |` ( F " ( 0 ... N ) ) ) = ( ( I |` ( F " ( 0 ..^ N ) ) ) u. ( I |` { ( F ` N ) } ) ) ) |
20 |
1
|
funfnd |
|- ( ph -> I Fn dom I ) |
21 |
2 3
|
ffvelrnd |
|- ( ph -> ( F ` N ) e. dom I ) |
22 |
|
fnressn |
|- ( ( I Fn dom I /\ ( F ` N ) e. dom I ) -> ( I |` { ( F ` N ) } ) = { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } ) |
23 |
20 21 22
|
syl2anc |
|- ( ph -> ( I |` { ( F ` N ) } ) = { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } ) |
24 |
23
|
uneq2d |
|- ( ph -> ( ( I |` ( F " ( 0 ..^ N ) ) ) u. ( I |` { ( F ` N ) } ) ) = ( ( I |` ( F " ( 0 ..^ N ) ) ) u. { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } ) ) |
25 |
19 24
|
eqtrd |
|- ( ph -> ( I |` ( F " ( 0 ... N ) ) ) = ( ( I |` ( F " ( 0 ..^ N ) ) ) u. { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } ) ) |