| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resvlem.r |
|- R = ( W |`v A ) |
| 2 |
|
resvlem.e |
|- C = ( E ` W ) |
| 3 |
|
resvlem.f |
|- E = Slot ( E ` ndx ) |
| 4 |
|
resvlem.n |
|- ( E ` ndx ) =/= ( Scalar ` ndx ) |
| 5 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 6 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
| 7 |
1 5 6
|
resvid2 |
|- ( ( ( Base ` ( Scalar ` W ) ) C_ A /\ W e. _V /\ A e. V ) -> R = W ) |
| 8 |
7
|
fveq2d |
|- ( ( ( Base ` ( Scalar ` W ) ) C_ A /\ W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` W ) ) |
| 9 |
8
|
3expib |
|- ( ( Base ` ( Scalar ` W ) ) C_ A -> ( ( W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` W ) ) ) |
| 10 |
1 5 6
|
resvval2 |
|- ( ( -. ( Base ` ( Scalar ` W ) ) C_ A /\ W e. _V /\ A e. V ) -> R = ( W sSet <. ( Scalar ` ndx ) , ( ( Scalar ` W ) |`s A ) >. ) ) |
| 11 |
10
|
fveq2d |
|- ( ( -. ( Base ` ( Scalar ` W ) ) C_ A /\ W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` ( W sSet <. ( Scalar ` ndx ) , ( ( Scalar ` W ) |`s A ) >. ) ) ) |
| 12 |
3 4
|
setsnid |
|- ( E ` W ) = ( E ` ( W sSet <. ( Scalar ` ndx ) , ( ( Scalar ` W ) |`s A ) >. ) ) |
| 13 |
11 12
|
eqtr4di |
|- ( ( -. ( Base ` ( Scalar ` W ) ) C_ A /\ W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` W ) ) |
| 14 |
13
|
3expib |
|- ( -. ( Base ` ( Scalar ` W ) ) C_ A -> ( ( W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` W ) ) ) |
| 15 |
9 14
|
pm2.61i |
|- ( ( W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` W ) ) |
| 16 |
3
|
str0 |
|- (/) = ( E ` (/) ) |
| 17 |
16
|
eqcomi |
|- ( E ` (/) ) = (/) |
| 18 |
|
reldmresv |
|- Rel dom |`v |
| 19 |
17 1 18
|
oveqprc |
|- ( -. W e. _V -> ( E ` W ) = ( E ` R ) ) |
| 20 |
19
|
eqcomd |
|- ( -. W e. _V -> ( E ` R ) = ( E ` W ) ) |
| 21 |
20
|
adantr |
|- ( ( -. W e. _V /\ A e. V ) -> ( E ` R ) = ( E ` W ) ) |
| 22 |
15 21
|
pm2.61ian |
|- ( A e. V -> ( E ` R ) = ( E ` W ) ) |
| 23 |
2 22
|
eqtr4id |
|- ( A e. V -> C = ( E ` R ) ) |