| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resvsca.r |  |-  R = ( W |`v A ) | 
						
							| 2 |  | resvsca.f |  |-  F = ( Scalar ` W ) | 
						
							| 3 |  | resvsca.b |  |-  B = ( Base ` F ) | 
						
							| 4 | 2 | fvexi |  |-  F e. _V | 
						
							| 5 |  | eqid |  |-  ( F |`s A ) = ( F |`s A ) | 
						
							| 6 | 5 3 | ressid2 |  |-  ( ( B C_ A /\ F e. _V /\ A e. V ) -> ( F |`s A ) = F ) | 
						
							| 7 | 4 6 | mp3an2 |  |-  ( ( B C_ A /\ A e. V ) -> ( F |`s A ) = F ) | 
						
							| 8 | 7 | 3adant2 |  |-  ( ( B C_ A /\ W e. _V /\ A e. V ) -> ( F |`s A ) = F ) | 
						
							| 9 | 1 2 3 | resvid2 |  |-  ( ( B C_ A /\ W e. _V /\ A e. V ) -> R = W ) | 
						
							| 10 | 9 | fveq2d |  |-  ( ( B C_ A /\ W e. _V /\ A e. V ) -> ( Scalar ` R ) = ( Scalar ` W ) ) | 
						
							| 11 | 2 8 10 | 3eqtr4a |  |-  ( ( B C_ A /\ W e. _V /\ A e. V ) -> ( F |`s A ) = ( Scalar ` R ) ) | 
						
							| 12 | 11 | 3expib |  |-  ( B C_ A -> ( ( W e. _V /\ A e. V ) -> ( F |`s A ) = ( Scalar ` R ) ) ) | 
						
							| 13 |  | simp2 |  |-  ( ( -. B C_ A /\ W e. _V /\ A e. V ) -> W e. _V ) | 
						
							| 14 |  | ovex |  |-  ( F |`s A ) e. _V | 
						
							| 15 |  | scaid |  |-  Scalar = Slot ( Scalar ` ndx ) | 
						
							| 16 | 15 | setsid |  |-  ( ( W e. _V /\ ( F |`s A ) e. _V ) -> ( F |`s A ) = ( Scalar ` ( W sSet <. ( Scalar ` ndx ) , ( F |`s A ) >. ) ) ) | 
						
							| 17 | 13 14 16 | sylancl |  |-  ( ( -. B C_ A /\ W e. _V /\ A e. V ) -> ( F |`s A ) = ( Scalar ` ( W sSet <. ( Scalar ` ndx ) , ( F |`s A ) >. ) ) ) | 
						
							| 18 | 1 2 3 | resvval2 |  |-  ( ( -. B C_ A /\ W e. _V /\ A e. V ) -> R = ( W sSet <. ( Scalar ` ndx ) , ( F |`s A ) >. ) ) | 
						
							| 19 | 18 | fveq2d |  |-  ( ( -. B C_ A /\ W e. _V /\ A e. V ) -> ( Scalar ` R ) = ( Scalar ` ( W sSet <. ( Scalar ` ndx ) , ( F |`s A ) >. ) ) ) | 
						
							| 20 | 17 19 | eqtr4d |  |-  ( ( -. B C_ A /\ W e. _V /\ A e. V ) -> ( F |`s A ) = ( Scalar ` R ) ) | 
						
							| 21 | 20 | 3expib |  |-  ( -. B C_ A -> ( ( W e. _V /\ A e. V ) -> ( F |`s A ) = ( Scalar ` R ) ) ) | 
						
							| 22 | 12 21 | pm2.61i |  |-  ( ( W e. _V /\ A e. V ) -> ( F |`s A ) = ( Scalar ` R ) ) | 
						
							| 23 |  | 0fv |  |-  ( (/) ` ( Scalar ` ndx ) ) = (/) | 
						
							| 24 |  | 0ex |  |-  (/) e. _V | 
						
							| 25 | 24 15 | strfvn |  |-  ( Scalar ` (/) ) = ( (/) ` ( Scalar ` ndx ) ) | 
						
							| 26 |  | ress0 |  |-  ( (/) |`s A ) = (/) | 
						
							| 27 | 23 25 26 | 3eqtr4ri |  |-  ( (/) |`s A ) = ( Scalar ` (/) ) | 
						
							| 28 |  | fvprc |  |-  ( -. W e. _V -> ( Scalar ` W ) = (/) ) | 
						
							| 29 | 2 28 | eqtrid |  |-  ( -. W e. _V -> F = (/) ) | 
						
							| 30 | 29 | oveq1d |  |-  ( -. W e. _V -> ( F |`s A ) = ( (/) |`s A ) ) | 
						
							| 31 |  | reldmresv |  |-  Rel dom |`v | 
						
							| 32 | 31 | ovprc1 |  |-  ( -. W e. _V -> ( W |`v A ) = (/) ) | 
						
							| 33 | 1 32 | eqtrid |  |-  ( -. W e. _V -> R = (/) ) | 
						
							| 34 | 33 | fveq2d |  |-  ( -. W e. _V -> ( Scalar ` R ) = ( Scalar ` (/) ) ) | 
						
							| 35 | 27 30 34 | 3eqtr4a |  |-  ( -. W e. _V -> ( F |`s A ) = ( Scalar ` R ) ) | 
						
							| 36 | 35 | adantr |  |-  ( ( -. W e. _V /\ A e. V ) -> ( F |`s A ) = ( Scalar ` R ) ) | 
						
							| 37 | 22 36 | pm2.61ian |  |-  ( A e. V -> ( F |`s A ) = ( Scalar ` R ) ) |