| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resvsca.r |  |-  R = ( W |`v A ) | 
						
							| 2 |  | resvsca.f |  |-  F = ( Scalar ` W ) | 
						
							| 3 |  | resvsca.b |  |-  B = ( Base ` F ) | 
						
							| 4 |  | elex |  |-  ( W e. X -> W e. _V ) | 
						
							| 5 |  | elex |  |-  ( A e. Y -> A e. _V ) | 
						
							| 6 |  | ovex |  |-  ( W sSet <. ( Scalar ` ndx ) , ( F |`s A ) >. ) e. _V | 
						
							| 7 |  | ifcl |  |-  ( ( W e. _V /\ ( W sSet <. ( Scalar ` ndx ) , ( F |`s A ) >. ) e. _V ) -> if ( B C_ A , W , ( W sSet <. ( Scalar ` ndx ) , ( F |`s A ) >. ) ) e. _V ) | 
						
							| 8 | 6 7 | mpan2 |  |-  ( W e. _V -> if ( B C_ A , W , ( W sSet <. ( Scalar ` ndx ) , ( F |`s A ) >. ) ) e. _V ) | 
						
							| 9 | 8 | adantr |  |-  ( ( W e. _V /\ A e. _V ) -> if ( B C_ A , W , ( W sSet <. ( Scalar ` ndx ) , ( F |`s A ) >. ) ) e. _V ) | 
						
							| 10 |  | simpl |  |-  ( ( w = W /\ x = A ) -> w = W ) | 
						
							| 11 | 10 | fveq2d |  |-  ( ( w = W /\ x = A ) -> ( Scalar ` w ) = ( Scalar ` W ) ) | 
						
							| 12 | 11 2 | eqtr4di |  |-  ( ( w = W /\ x = A ) -> ( Scalar ` w ) = F ) | 
						
							| 13 | 12 | fveq2d |  |-  ( ( w = W /\ x = A ) -> ( Base ` ( Scalar ` w ) ) = ( Base ` F ) ) | 
						
							| 14 | 13 3 | eqtr4di |  |-  ( ( w = W /\ x = A ) -> ( Base ` ( Scalar ` w ) ) = B ) | 
						
							| 15 |  | simpr |  |-  ( ( w = W /\ x = A ) -> x = A ) | 
						
							| 16 | 14 15 | sseq12d |  |-  ( ( w = W /\ x = A ) -> ( ( Base ` ( Scalar ` w ) ) C_ x <-> B C_ A ) ) | 
						
							| 17 | 12 15 | oveq12d |  |-  ( ( w = W /\ x = A ) -> ( ( Scalar ` w ) |`s x ) = ( F |`s A ) ) | 
						
							| 18 | 17 | opeq2d |  |-  ( ( w = W /\ x = A ) -> <. ( Scalar ` ndx ) , ( ( Scalar ` w ) |`s x ) >. = <. ( Scalar ` ndx ) , ( F |`s A ) >. ) | 
						
							| 19 | 10 18 | oveq12d |  |-  ( ( w = W /\ x = A ) -> ( w sSet <. ( Scalar ` ndx ) , ( ( Scalar ` w ) |`s x ) >. ) = ( W sSet <. ( Scalar ` ndx ) , ( F |`s A ) >. ) ) | 
						
							| 20 | 16 10 19 | ifbieq12d |  |-  ( ( w = W /\ x = A ) -> if ( ( Base ` ( Scalar ` w ) ) C_ x , w , ( w sSet <. ( Scalar ` ndx ) , ( ( Scalar ` w ) |`s x ) >. ) ) = if ( B C_ A , W , ( W sSet <. ( Scalar ` ndx ) , ( F |`s A ) >. ) ) ) | 
						
							| 21 |  | df-resv |  |-  |`v = ( w e. _V , x e. _V |-> if ( ( Base ` ( Scalar ` w ) ) C_ x , w , ( w sSet <. ( Scalar ` ndx ) , ( ( Scalar ` w ) |`s x ) >. ) ) ) | 
						
							| 22 | 20 21 | ovmpoga |  |-  ( ( W e. _V /\ A e. _V /\ if ( B C_ A , W , ( W sSet <. ( Scalar ` ndx ) , ( F |`s A ) >. ) ) e. _V ) -> ( W |`v A ) = if ( B C_ A , W , ( W sSet <. ( Scalar ` ndx ) , ( F |`s A ) >. ) ) ) | 
						
							| 23 | 9 22 | mpd3an3 |  |-  ( ( W e. _V /\ A e. _V ) -> ( W |`v A ) = if ( B C_ A , W , ( W sSet <. ( Scalar ` ndx ) , ( F |`s A ) >. ) ) ) | 
						
							| 24 | 4 5 23 | syl2an |  |-  ( ( W e. X /\ A e. Y ) -> ( W |`v A ) = if ( B C_ A , W , ( W sSet <. ( Scalar ` ndx ) , ( F |`s A ) >. ) ) ) | 
						
							| 25 | 1 24 | eqtrid |  |-  ( ( W e. X /\ A e. Y ) -> R = if ( B C_ A , W , ( W sSet <. ( Scalar ` ndx ) , ( F |`s A ) >. ) ) ) |