Description: Value of nontrivial structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resvsca.r | |- R = ( W |`v A ) |
|
| resvsca.f | |- F = ( Scalar ` W ) |
||
| resvsca.b | |- B = ( Base ` F ) |
||
| Assertion | resvval2 | |- ( ( -. B C_ A /\ W e. X /\ A e. Y ) -> R = ( W sSet <. ( Scalar ` ndx ) , ( F |`s A ) >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resvsca.r | |- R = ( W |`v A ) |
|
| 2 | resvsca.f | |- F = ( Scalar ` W ) |
|
| 3 | resvsca.b | |- B = ( Base ` F ) |
|
| 4 | 1 2 3 | resvval | |- ( ( W e. X /\ A e. Y ) -> R = if ( B C_ A , W , ( W sSet <. ( Scalar ` ndx ) , ( F |`s A ) >. ) ) ) |
| 5 | iffalse | |- ( -. B C_ A -> if ( B C_ A , W , ( W sSet <. ( Scalar ` ndx ) , ( F |`s A ) >. ) ) = ( W sSet <. ( Scalar ` ndx ) , ( F |`s A ) >. ) ) |
|
| 6 | 4 5 | sylan9eqr | |- ( ( -. B C_ A /\ ( W e. X /\ A e. Y ) ) -> R = ( W sSet <. ( Scalar ` ndx ) , ( F |`s A ) >. ) ) |
| 7 | 6 | 3impb | |- ( ( -. B C_ A /\ W e. X /\ A e. Y ) -> R = ( W sSet <. ( Scalar ` ndx ) , ( F |`s A ) >. ) ) |