Metamath Proof Explorer


Theorem retanhcl

Description: The hyperbolic tangent of a real number is real. (Contributed by Mario Carneiro, 4-Apr-2015)

Ref Expression
Assertion retanhcl
|- ( A e. RR -> ( ( tan ` ( _i x. A ) ) / _i ) e. RR )

Proof

Step Hyp Ref Expression
1 ax-icn
 |-  _i e. CC
2 recn
 |-  ( A e. RR -> A e. CC )
3 mulcl
 |-  ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC )
4 1 2 3 sylancr
 |-  ( A e. RR -> ( _i x. A ) e. CC )
5 rpcoshcl
 |-  ( A e. RR -> ( cos ` ( _i x. A ) ) e. RR+ )
6 5 rpne0d
 |-  ( A e. RR -> ( cos ` ( _i x. A ) ) =/= 0 )
7 tanval
 |-  ( ( ( _i x. A ) e. CC /\ ( cos ` ( _i x. A ) ) =/= 0 ) -> ( tan ` ( _i x. A ) ) = ( ( sin ` ( _i x. A ) ) / ( cos ` ( _i x. A ) ) ) )
8 4 6 7 syl2anc
 |-  ( A e. RR -> ( tan ` ( _i x. A ) ) = ( ( sin ` ( _i x. A ) ) / ( cos ` ( _i x. A ) ) ) )
9 8 oveq1d
 |-  ( A e. RR -> ( ( tan ` ( _i x. A ) ) / _i ) = ( ( ( sin ` ( _i x. A ) ) / ( cos ` ( _i x. A ) ) ) / _i ) )
10 4 sincld
 |-  ( A e. RR -> ( sin ` ( _i x. A ) ) e. CC )
11 recoshcl
 |-  ( A e. RR -> ( cos ` ( _i x. A ) ) e. RR )
12 11 recnd
 |-  ( A e. RR -> ( cos ` ( _i x. A ) ) e. CC )
13 1 a1i
 |-  ( A e. RR -> _i e. CC )
14 ine0
 |-  _i =/= 0
15 14 a1i
 |-  ( A e. RR -> _i =/= 0 )
16 10 12 13 6 15 divdiv32d
 |-  ( A e. RR -> ( ( ( sin ` ( _i x. A ) ) / ( cos ` ( _i x. A ) ) ) / _i ) = ( ( ( sin ` ( _i x. A ) ) / _i ) / ( cos ` ( _i x. A ) ) ) )
17 9 16 eqtrd
 |-  ( A e. RR -> ( ( tan ` ( _i x. A ) ) / _i ) = ( ( ( sin ` ( _i x. A ) ) / _i ) / ( cos ` ( _i x. A ) ) ) )
18 resinhcl
 |-  ( A e. RR -> ( ( sin ` ( _i x. A ) ) / _i ) e. RR )
19 18 5 rerpdivcld
 |-  ( A e. RR -> ( ( ( sin ` ( _i x. A ) ) / _i ) / ( cos ` ( _i x. A ) ) ) e. RR )
20 17 19 eqeltrd
 |-  ( A e. RR -> ( ( tan ` ( _i x. A ) ) / _i ) e. RR )