Step |
Hyp |
Ref |
Expression |
1 |
|
merco1lem1 |
|- ( ( ( ( ( ph -> ph ) -> ph ) -> ( ph -> F. ) ) -> ph ) -> ( F. -> ph ) ) |
2 |
|
merco1 |
|- ( ( ( ( ( ( ph -> ph ) -> ph ) -> ( ph -> F. ) ) -> ph ) -> ( F. -> ph ) ) -> ( ( ( F. -> ph ) -> ( ph -> ph ) ) -> ( ph -> ( ph -> ph ) ) ) ) |
3 |
1 2
|
ax-mp |
|- ( ( ( F. -> ph ) -> ( ph -> ph ) ) -> ( ph -> ( ph -> ph ) ) ) |
4 |
|
merco1 |
|- ( ( ( ( ( ph -> ( ph -> ph ) ) -> ( ph -> F. ) ) -> ( ph -> F. ) ) -> F. ) -> ( ( F. -> ph ) -> ( ph -> ph ) ) ) |
5 |
|
merco1 |
|- ( ( ( ( ( ( ph -> ( ph -> ph ) ) -> ( ph -> F. ) ) -> ( ph -> F. ) ) -> F. ) -> ( ( F. -> ph ) -> ( ph -> ph ) ) ) -> ( ( ( ( F. -> ph ) -> ( ph -> ph ) ) -> ( ph -> ( ph -> ph ) ) ) -> ( ph -> ( ph -> ( ph -> ph ) ) ) ) ) |
6 |
4 5
|
ax-mp |
|- ( ( ( ( F. -> ph ) -> ( ph -> ph ) ) -> ( ph -> ( ph -> ph ) ) ) -> ( ph -> ( ph -> ( ph -> ph ) ) ) ) |
7 |
3 6
|
ax-mp |
|- ( ph -> ( ph -> ( ph -> ph ) ) ) |
8 |
|
merco1lem1 |
|- ( ( ( ( ( ps -> ph ) -> ph ) -> ( ph -> F. ) ) -> ph ) -> ( F. -> ph ) ) |
9 |
|
merco1 |
|- ( ( ( ( ( ( ps -> ph ) -> ph ) -> ( ph -> F. ) ) -> ph ) -> ( F. -> ph ) ) -> ( ( ( F. -> ph ) -> ( ps -> ph ) ) -> ( ph -> ( ps -> ph ) ) ) ) |
10 |
8 9
|
ax-mp |
|- ( ( ( F. -> ph ) -> ( ps -> ph ) ) -> ( ph -> ( ps -> ph ) ) ) |
11 |
|
merco1 |
|- ( ( ( ( ( ph -> ( ps -> ph ) ) -> ( ps -> F. ) ) -> ( ( ph -> ( ph -> ( ph -> ph ) ) ) -> F. ) ) -> F. ) -> ( ( F. -> ph ) -> ( ps -> ph ) ) ) |
12 |
|
merco1 |
|- ( ( ( ( ( ( ph -> ( ps -> ph ) ) -> ( ps -> F. ) ) -> ( ( ph -> ( ph -> ( ph -> ph ) ) ) -> F. ) ) -> F. ) -> ( ( F. -> ph ) -> ( ps -> ph ) ) ) -> ( ( ( ( F. -> ph ) -> ( ps -> ph ) ) -> ( ph -> ( ps -> ph ) ) ) -> ( ( ph -> ( ph -> ( ph -> ph ) ) ) -> ( ph -> ( ps -> ph ) ) ) ) ) |
13 |
11 12
|
ax-mp |
|- ( ( ( ( F. -> ph ) -> ( ps -> ph ) ) -> ( ph -> ( ps -> ph ) ) ) -> ( ( ph -> ( ph -> ( ph -> ph ) ) ) -> ( ph -> ( ps -> ph ) ) ) ) |
14 |
10 13
|
ax-mp |
|- ( ( ph -> ( ph -> ( ph -> ph ) ) ) -> ( ph -> ( ps -> ph ) ) ) |
15 |
7 14
|
ax-mp |
|- ( ph -> ( ps -> ph ) ) |