| Step | Hyp | Ref | Expression | 
						
							| 1 |  | retop |  |-  ( topGen ` ran (,) ) e. Top | 
						
							| 2 |  | uniretop |  |-  RR = U. ( topGen ` ran (,) ) | 
						
							| 3 | 2 | restid |  |-  ( ( topGen ` ran (,) ) e. Top -> ( ( topGen ` ran (,) ) |`t RR ) = ( topGen ` ran (,) ) ) | 
						
							| 4 | 1 3 | ax-mp |  |-  ( ( topGen ` ran (,) ) |`t RR ) = ( topGen ` ran (,) ) | 
						
							| 5 |  | iccssre |  |-  ( ( x e. RR /\ y e. RR ) -> ( x [,] y ) C_ RR ) | 
						
							| 6 | 5 | rgen2 |  |-  A. x e. RR A. y e. RR ( x [,] y ) C_ RR | 
						
							| 7 |  | ssid |  |-  RR C_ RR | 
						
							| 8 |  | reconn |  |-  ( RR C_ RR -> ( ( ( topGen ` ran (,) ) |`t RR ) e. Conn <-> A. x e. RR A. y e. RR ( x [,] y ) C_ RR ) ) | 
						
							| 9 | 7 8 | ax-mp |  |-  ( ( ( topGen ` ran (,) ) |`t RR ) e. Conn <-> A. x e. RR A. y e. RR ( x [,] y ) C_ RR ) | 
						
							| 10 | 6 9 | mpbir |  |-  ( ( topGen ` ran (,) ) |`t RR ) e. Conn | 
						
							| 11 | 4 10 | eqeltrri |  |-  ( topGen ` ran (,) ) e. Conn |