Metamath Proof Explorer


Theorem retos

Description: The real numbers are a totally ordered set. (Contributed by Thierry Arnoux, 21-Jan-2018)

Ref Expression
Assertion retos
|- RRfld e. Toset

Proof

Step Hyp Ref Expression
1 ltso
 |-  < Or RR
2 idref
 |-  ( ( _I |` RR ) C_ <_ <-> A. x e. RR x <_ x )
3 leid
 |-  ( x e. RR -> x <_ x )
4 2 3 mprgbir
 |-  ( _I |` RR ) C_ <_
5 df-refld
 |-  RRfld = ( CCfld |`s RR )
6 5 ovexi
 |-  RRfld e. _V
7 rebase
 |-  RR = ( Base ` RRfld )
8 rele2
 |-  <_ = ( le ` RRfld )
9 relt
 |-  < = ( lt ` RRfld )
10 7 8 9 tosso
 |-  ( RRfld e. _V -> ( RRfld e. Toset <-> ( < Or RR /\ ( _I |` RR ) C_ <_ ) ) )
11 6 10 ax-mp
 |-  ( RRfld e. Toset <-> ( < Or RR /\ ( _I |` RR ) C_ <_ ) )
12 1 4 11 mpbir2an
 |-  RRfld e. Toset